Nucleosynthesis in GW transients

Almudena Arcones

Established by the European Commission

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

Contribution of all nucleosynthesis processes

s-process and r-process

slow and rapid neutron capture compared to beta decay

r-process path

Ζ

8

Galactic chemical evolution

ESO HE Photo 2/8/02 (30 October 2002)

r-process in ultra metal-poor stars

Sneden, Cowan, Gallino 2008

Abundances of r-process elements:

- ultra metal-poor stars and

- r-process solar system: N_{solar} - N_s

Robust r-process for 56<Z<83

Scatter for lighter heavy elements, Z~40

Where does the r-process occur?

rapid process \rightarrow explosions high neutron densities \rightarrow neutron stars

Neutron star mergers

Core-collapse supernovae NEUTRON STAR ILLUSTRATION Cas A (Chandra X-Ray observatory) Neutron-star merger simulation (S. Rosswog)

t : 1.15e+00 s / T : 0.56 GK / ρ_b : 3.98e+02 g/cm³

R-process fingerprint: Kilonova

Radioactive decay of neutron-rich nuclei —> transient with kilo-nova luminosity Li & Paczynski (1998)

Electromagnetic counter part to gravitational waves —> observed after GW170817 Metzger, Martinez-Pinedo, Darbha, Quataert, Arcones, Kasen et al. (2010)

Kilonova

Silver kilonova

Gold kilonova

Neutron star merger ejecta

Approximate timescale [ms]

Neutron star mergers: neutrino-driven wind

3D simulations after merger disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

Martin et al. (2015)

see also

Fernandez & Metzger 2013, Metzger & Fernandez 2014, Just et al. 2014, Sekiguchi et al. 2016

Neutron star mergers: neutrino-driven wind t: 4.89e-03 s / T: 9.00 GK / $\rho_{\rm b}$: 4.63e+07 g/cm³

Time and angle dependency

Black hole formation determines time for wind nucleosynthesis (Fernandez & Metzger 2013, Kasen et al. 2015)

Martin et al. (2015)

Wind and dynamic ejecta

Wind ejecta complement dynamic ejecta

Complete mixing: solar system abundances and UMP stars

Martin et al. (2015)

Wind kilonova

Less or no heavy r-process depending on angle \rightarrow lower opacities

- Wind kilonova peaks on blue after ~4 hours
- Dynamic ejecta kilonova peaks on IR after 4-5 days

Three times for ns collapse: t=90, 140 and 190 ms

First direct detection of r-process element

Ground-based observations of AT2017gfo (GW170817)

 $M_{\rm Sr} \approx 5 \cdot 10^{-5} M_{\odot}$

Identification of strontium in the merger of two neutron stars

Darach Watson^{1,2}, Camilla J. Hansen^{3,*}, Jonatan Selsing^{1,2,*}, Andreas Koch⁴, Daniele B. Malesani^{1,2,5}, Anja C. Andersen¹, Johan P. U. Fynbo^{1,2}, Almudena Arcones^{6,7}, Andreas Bauswein^{7,8}, Stefano Covino⁹, Aniello Grado¹⁰, Kasper E. Heintz^{1,2,11}, Leslie Hunt¹², Chryssa Kouveliotou^{13,14} Giorgos Leloudas^{1,5}, Andrew Levan^{15,16}, Paolo Mazzali^{17,18}, Elena Pian¹⁹ [See end for affiliations]

Equation of state and neutrinos

GR simulations: different EoS (Bovard et al. 2017) impact of neutrinos (Martin et al. 2018)

Equation of state and neutrinos

GR simulations: different EoS (Bovard et al. 2017) impact of neutrinos (Martin et al. 2018)

Trends with metallicity

Sneden, Cowan, Gallino 2008

[Fe/H] ~time

Galactic chemical evolution

Scatter at low metallicities: rare event, Eu ejected early Eu/Fe drops around [Fe/H]~-1: most of Eu should be ejected before sn la

Côté et al. 2019

Core-collapse supernovae

Standard **neutrino-driven supernova**: Weak r-process and vp-process Elements up to ~Ag

Bliss et al. 2018: astro uncertainties

Magneto-rotational supernovae

Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006)

2D and 3D + parametric neutrino treatment :

- jet-like explosion: heavy r-process
- magnetic field vs. neutrinos: weak r-process

Nishimura et al. 2015, 2017, Winteler et al. 2012, Mösta et al. 2018

Magneto-rotational supernovae: r-process

Neutrinos and late evolution are important Martin Obergaulinger: 2D, M1, ~1-2s Progenitor: 35 M_{sun}

Obergaulinger & Aloy (2017)

Impact of rotation and magnetic field

Reichert, Obergaulinger, Aloy, Arcones (in prep)

Nuclear masses

Abundances based on density functional theory

- six sets of different parametrisation (Erler et al. 2012)
- two realistic astrophysical scenarios: jet-like sn and neutron star mergers

Martin, Arcones, Nazarewicz, Olsen (2016)

First systematic uncertainty band for r-process abundances

Uncertainty band depends on A, in contrast to homogeneous band for all A e.g., Mumpower et al. 2015

Can we link masses to r-process abundances?

Fission: barriers and yield distributions

Neutron star mergers: r-process with two fission descriptions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures

Conclusions

Core-collapse supernovae: wind: up to ~Ag Magneto-rot.: r-process

New era

Heavy elements synthesized in neutron star mergers and core-collapse supernovae

Multimessenger astronomy: EM+GW+neutrinos

Improved astrophysical simulations + detailed microphysics (supercomputers)

New experimental frontier: extreme-neutron rich nuclei (FAIR, FRIB, RIKEN, TRIUMF,...)

Observations of oldest stars (E-ELT, ESPRESSO,...)

Neutron star mergers and core-collapse supernovae laboratories for physics at the extremes

