Numerical-relativity simulations of binary black holes in the 3G era

Harald Pfeiffer AEI Potsdam

The Science of 3rd Generation GW Detectors Berlin-Brandenburg Academy of Sciences & Humanities Oct 23, 2019

0.22s

2

Numerical Relativity

BH perturbation theory

Role of NR

- Solution of GR for late inspiral + merger
- Provide error estimates
- Determine regions of validity of perturbative methods
 - all available perturbation orders needed for science (3.5PN, 2SMR). No extra order for error estimate

- \Rightarrow complete waveform models for GW data-analysis
 - → Alessandra's talk

Role of NR

- Solution of GR for late inspiral + merger
- Provide error estimates
- Determine regions of validity of perturbative methods
 - all available perturbation orders needed for science (3.5PN, 2SMR). No extra order for error estimate

- \Rightarrow complete waveform models for GW data-analysis
 - → Alessandra's talk

The very beginning

ANNALS OF PHYSICS: 29, 304-331 (1964)

The Two-Body Problem in Geometrodynamics

SUSAN G. HAHN

International Business Machines Corporation, New York, New York

AND

RICHARD W. LINDQUIST

The numerical calculations were carried out on an IBM 7090 electronic computer. The parameters a and μ_0 were both set equal to unity; the mesh lengths were assigned the values $h_1 = 0.02$, $h_2 = \pi/150 \approx 0.021$, yielding a 51×151 mesh. The calculations of all unknown functions, including a great number of input-output operations and some built-in checking procedures, took approximately four minutes per time step. Different check routines indicated that results close to the point $\mu = 0$, $\eta = 0$ lost accuracy fairly quickly. Since these would, in the long run, influence meshpoints further away, the computations were stopped after the 50th time step, when the total time elapsed was approximately 1.8. Some of the results are shown in Table I.

The first 50 Years of numerical relativity for BBH

1962 ADM 3+1 formulation Abr critic 1964 Hahn-Lindquist 2 wormholes 1984 Unruh	1992,3 Choptuik; ahams+Evans cal phenomena gra 1997 Brandt- Brügman puncture da	1999-00 AEI/PSU zing collision ~2 Schi n m ata	2000-04 AEI/UTB-NASA revive crashing codes (Lazarus) of 000 Choptuik; netter;Brügmann esh refinement 2005	2005 Pretorius inspiral-merger- ringdown (IMR) w/ harmonic 2005- Campanelli+ IMR w/ BS moving pur 2 Schee	S Ajit phence 06 ; Baker+ SSN & nctures 006-08 IHP+ SXS	2007- h, AEI, Jena om GW models 2009- UMD, SXS EOB GW mode 20 Schmi Boyl	2011 Lousto ea q=100 2014- precessing GVV models idt ea; 2015 e ea Szilagyi ea
excision 964 1975-77	BBH Grand Ch	allenge - 999	constraint da	iea IMR amping ~200	w/ spectral	frai 2008	2011
Smarr-Eppley head-on collision 1979 Yo kinematics a dynamics of 1989 Bona-M modified (hyperbo Courtesy Carlo updated by HP	I994 COOK Bowen-York initial data rk I994-9 and NCSA-Wa GR improve -95 head-on co lasso ADM, I blicity) Cor s Lousto, hype	BSSN evolution system 5 ashU con d sa 1999-2005 mell, Caltech erbolic formu	Alcubierre gauge conditions gauge conditions Brüg formal thin ndwich ID York, h, LSU lations 2000 A isolated	Ba Gon 2004 non-sp mann ea ne orbit 2003-08 Cook, Pfeiffer ea improved ID Ashtekar F horizons	ker ea; zalez ea inning BBH kicks 2007 S PN-N compar 2007-11 RIT; Jena; AE BBH superki	SXS NR ison El; cks Bishop, Cauchy characteristic extraction El; Cooo Bernu Cooo Cooo Cooo Cooo Cauchy Cauchy Cauchy Cauchy Cauchy Cauchy Cauchy Cauchy Cauchy Cooo Cauchy Cauchy Cooo Cauchy Cooo Cauchy Cooo Cauchy Cooo Cauchy Cooo Cauchy Cooo Cauchy Cooo Cooo Cauchy Cooo Cooo Cauchy Cooo Cooo Cooo Cooo Cooo Cooo Cooo Co	Lovelace ea S/M ² =0.97 2011- Le Tiec ea self-force studies 2013 constant constant 2013 2013 2013 CaTech; SXS Precessing Parameter studies 24z

2005: First working BBH inspirals

Pretorius 05

Campanelli+06

Important early result: **Simplicity of merger** Continuous transition inspiral → ringdown

• Expand in **basis-functions**

 Compute derivatives analytically

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$

Simulations of Extreme Spacetimes (SXS) collaboration

7 H. Pfeiffer Science of 3G Oct 23, 2019

• Expand in **basis-functions**

 Compute derivatives analytically

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$

Simulations of Extreme Spacetimes (SXS) collaboration

7 H. Pfeiffer Science of 3G Oct 23, 2019

• Expand in **basis-functions**

 Compute derivatives analytically

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$

Simulations of Extreme Spacetimes (SXS) collaboration

• Expand in **basis-functions**

 Compute derivatives analytically

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$

Accuracy of SpEC

8

Scheel,HP+ 09

Accuracy of SpEC

Scheel, HP+ 09

PN approximants Equally justified approaches to derive inspiral rate from energy balance

Boyle..HP+ 07

Boyle..HP+ 07

PN approximants Equally justified approaches to derive inspiral rate from energy balance

$$\frac{dE}{dt} = -F_{\rm GW}$$

PN approximants Equally justified approaches to derive inspiral rate from energy balance

$$\frac{dE}{dt} = -F_{\rm GW}$$

Boyle..HP+ 07

Boyle..HP+ 07

PN approximants Equally justified approaches to derive inspiral rate from energy balance

$$\frac{dE}{dt} = -F_{\rm GW}$$

Boyle..HP+ 07

• NR & PN agree!

Boyle..HP+ 07

- NR & PN agree!
- Or do they?
 - Some versions of PN match well
 - No a priori knowledge which ones work (if any)

Boyle..HP+ 07

- NR & PN agree!
- Or do they?
 - Some versions of PN match well
 - No **a priori** knowledge which ones work (if any)
- q=1, S=0 best case
 - unequal masses and/or spinning BH give larger deviations

MacDonald..HP+ 12 see also Ohme+ 11

Parameter space exploration

NINJA

Aylott .. HP+ 09

Parameter space exploration

NINJA *Aylott .. HP*+ 09 0.3 SpEC q=1 CCATIE r2 CCATIE r0 0.3 ····· wW -0.3 -0.3 BAM FAU BAM HHB S00 CCATIE r4 CCATIE r6 0.3 0.1 www ~^^~WWW -0.3 BAM HHB S25 BAM HHB S50 CCATIE s6 Hahndol kick 0.3 ~~~~~M -~~~W $\Lambda\Lambda\Lambda\Lambda$ -0.3 BAM HHB S75 BAM HHB S85 Hahndol non Lean 2 0.3 -~~~ ~~~~M -0.3 PU T52W LazEv PU CP Lean c 0.3 0.3 1.M.M. AAAAAA ~~~~~ $\Lambda \Lambda \Lambda I$ VVVVV -0.3 -0.3 MayaKranc e02 UIUC cp UIUC punc MayaKranc e0 0.3 03 ~~~~~ MMM -0.3 -0.3 -2000 -1000 t/M -1000 t/M -300 t/M -300 t/M 0 -2000 -600 -600 BAM FAU BAM HHB \$00 BAM HHB S25 BAM HHB \$50 BAM HHB \$75 BAM HHB \$85 0.3 CCATIE r0 CCATIE r2 CCATIE r4 CCATIE r6 CCATIE s6 Hahndol kick 03 -01 Hahndol nor LazEv Lean 2 Lean c MayaKranc el MavaKranc e02 03 -0.3 UIUC cp PU CP PU T52W SpEC q=1 UIUC punc 03 -100 t/M -100 0 t/M -100 0 t/M -100 t/M⁰ -100 t/M⁰ -100 t/M⁰

Improve analytical waveform models

SXS waveform catalog 2019 edition

2018 simulations; params over-plotted on GW events

SXS Collaboration (Boyle, ...HP+), CQG 2019 (1904.04831)

SXS waveform catalog 2019 edition

SXS waveform catalog 2019 edition

More exploration efforts

Catalog	Started	$U_{pdating?}$	$Simulation_{S}$	$m_1/m_2 \ range$	$ \chi_1 $ range	X2 range	$P_{\mathrm{recessing?}}$	$Median N_{\rm cyc}$	Public?
NINJA [98,115]	2008	X	63	1-10	0 - 0.95	0 - 0.95	X	15	X
NRAR [120]	2013	X	25	1 - 10	0 - 0.8	0 - 0.6	\checkmark	24	X
Georgia Tech $[122]$	2016	\checkmark	452	1 - 15	0 - 0.8	0 - 0.8	\checkmark	4	\checkmark
RIT (2017) [123]	2017	\checkmark	126	1 - 6	0 - 0.85	0 - 0.85	\checkmark	16	\checkmark
RIT (2019) [124]	2017	\checkmark	320	1 - 6	0 - 0.95	0 - 0.95	\checkmark	19	\checkmark
NCSA (2019) [125]	2019	X	89	1 - 10	0	0	X	20	X
SXS (2018)	2013	\checkmark	337	1 - 10	0 - 0.995	0 - 0.995	\checkmark	23	\checkmark
SXS (2019)	2013	\checkmark	2018	1 - 10	0 - 0.998	0 - 0.998	\checkmark	39	\checkmark

SXS Collaboration (Boyle, ...HP+), CQG 2019 (1904.04831)

And Palma group (Husa+), which hasn't published a catalog

Beginning to explore eccentricity (q~1)

Huerta+ 1901.07038

Ramos-Buades+ 1909.11011

Two families of BH-BH waveform models

Effective one body (EOB)

$$H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2} \right]}$$

Buonanno, Damour 99

Phenomenological (Phenom)

Calibrated against numerical simulations circular orbits only

• Most accurate inspiral • Full precession \vec{S}_1, \vec{S}_2

E.g. Pan..HP+ 14, Taracchini..HP+ 14, Bohe..HP+, 17

19 H. Pfeiffer Science of 3G Oct 23, 2019

- Fast evaluation
- Approximate precession

e.g. Hannam+13, Khan+15

BH-BH waveform modeling continues

- state of the art: Precession and higher modes
- EOB models, Phenom models
- new kid on the block: NR surrogate models
 - need O(1000) NR sims
 - nearly "automatic" model construction
 - model-accuracy ~ NR-accuracy

Varma..HP 1812.07865 and refs therein

Waveform knowledge *underpins GW astronomy*

21 H. Pfeiffer Science of 3G Oct 23, 2019

Parameter estimation

Validation

LIGO & Virgo: CQG 2017 (1611.07531)"

Waveform knowledge *underpins GW astronomy*

Parameter estimation verage **Two models**

40

 $m_1^{\rm source}/{
m M}_{\odot}$

LIGO & Virgo: CQG 2017 (1611.07531)

Nearly extremal BBH

- NR sims with aligned & nearly extremal spins
- Study GW parameter recovery

 $\vec{\chi_{1,2}} = \{ \neq 0.96, -0.9 \} \hat{L}$

Fully generic (eccentric & precessing) BBH

NR in the 3G and LISA era

vacuum GR is mass-invariant

Ground-based Interferometers

Exploring all BH through all of universe

LISA (in particular): all mass-ratios, eccentricity

more diverse & louder events ⇒ <u>much</u> broader param' coverage & higher accuracy

Required accuracy s.t. systematic errors < statistical errors

Accuracy

- good for detection (3G+LISA)
- good for <u>today's</u> LIGO/Virgo events
- Accuracy improvement tedious
 - must carefully control
 <u>several</u> error sources

 No apparent difficulty with precession, eccentricity, higher modes, ring-down

Improving NR accuracy (some efforts)

Centre of mass correction

cleaner higher modes

Definition of spin in NR *reproduce PN nutations*

Spectral Cauchy Characteristic Extraction *remove gauge-effects* Barkett+ 1910.09677 Characteristic ϕ^+)+) Cauchy $\breve{r} \rightarrow$

NR records

Lewis, Zimmerman, HP 17

NR records

			Husa+ 15				
q=1:		NR-records several years old. Since then:					
q<1:	denser & improved sampling of "easy" regions						
Scheel+ 14 LovelaceH	_	little progress with "hard" regions					
		<i>hard</i> : two of {q≥ 5}, {χ ₁ ≥ 0.9},					
eccentri		{χ₂≈0.5}, {N _{cycle} ≈ 50}					
		Basic issue: wall-clock time					
		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ -0.20 \end{array} \end{array} - \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ -100 \end{array} - \begin{array}{c} \end{array} \\ -80 \end{array} - \begin{array}{c} -60 \end{array} - \begin{array}{c} -40 \end{array} - \begin{array}{c} -20 \end{array}$					
Lewis, Zimmer	rman, HP 1	7 SzilagyiHP+15 $(t - t_{peak}) / 1000M$	0				
			A State of the second sec				

Hardest limitation: wall-time

• Scaling of number of time-steps

q — more steps per orbit
 (Courant limit — *numerics*)
 q — more orbits per inspiral
 (physics)
 (MΩ)^{8/3} — start frequency

 $\chi \gtrsim 0.6$: extra factor ~1/(1- χ_1)(1- χ_2) χ_2 larger impact than χ_1

- Factor 2 in mass-ratio, factor 2 in low-frequency, higher accuracy
 → O(100) increase in wall-time (with current codes)
- Need:
 - Better parallel scaling \rightarrow reduce constant of proportionality
 - Circumvent small BH courant limit → mitigate q-scaling
 - Either requires nearly complete re-development of NR code
- ... and help from perturbative methods
 - high order PN and PM; resummation through EOB \rightarrow larger Ω_i
 - 2nd order small-mass-ratio perturbation theory → less extreme q

Small mass-ratio limit (SMR a.k.a. "grav. self-force")

Second order: circular around Schwarzschild Pound+ 1908.07419

Grand Contraction of the second secon

Small mass-ratio (SMR) from NR

$$\Phi(M\omega) = \frac{1}{\nu} \Phi_0(M\omega) + \Phi_1(M\omega) + \nu \Phi_2(M\omega) + \dots$$

- Fit GW-phase Φ to NR simulations up to q=10
- Φ_2 is *remarkably small*
- Regions of validity of NR and 2nd order SMR remarkably close
- Caveat: Analysis only for <u>non-spinning</u> and <u>circular</u> binaries.

van de Meent & HP, in prep

Summary

- 3G detectors & LISA require significant but likely possible improvements over state-of-the-art:
 - accuracy
 - length
 - parameter space
 - high spins
- Biggest challenge
 - high mass-ratio

 The mass-ratio gap between NR and 2nd order SMR may be small or even absent

Summary

- 3G detectors & LISA require significant but likely possible improvements over state-of-the-art:
 - accuracy
 - length
 - parameter space
 - high spins
- Biggest challenge
 - high mass-ratio

 The mass-ratio gap between NR and 2nd order SMR may be small or even absent

