Probing Gravity with 3G detectors

Thomas P. Sotiriou

UNITED KINGDOM · CHINA · MALAYSIA

◆ How do we model it?

◆ What's the gravitational wave imprint?

Astro 2020 Science White Paper: Extreme Gravity and Fundamental Physics, arXiv: 1903.09221 [astro-ph.HE]

'Gravitational Waves, Black holes, and Fundamental Physics' COST Action roadmap: arXiv:1806.05195 [gr-qc]

Nature of gravity

Lorentz symmetry $\cdot \epsilon$

Einstein-aether theory, Horava gravity

Mass of the graviton $\cdot \epsilon$.

massive and bimetric gravity

Parity $\cdot \epsilon$.

dynamical Chern-Simons gravity

New fields, particles, interactions $\cdot \epsilon$.

Quantum gravity, Extensions of the Standard Model

Caveat: Do we really expect new physics at these curvatures and field strengths?

Nature of compact objects

- **Structure of black holes** \cdot \leftarrow 'Hairy' black holes, multiple horizons, etc.
- **Are 'black holes' actually black holes?** $\cdot \epsilon$. Firewalls, fuzzballs, gravastars, boson stars, etc.
- **Structure of neutron stars** $\cdot \epsilon$. (overlap with testing EOS)

Caveats: No-hair theorems; elusive nature of horizons; EOSrelated degeneracies

Nature of DM and DE

- **Black holes as dark matter** $\cdot \epsilon$. Primordial black holes (overlap)
- **Dark matter detection with compact objects** $\cdot \epsilon$. Orbital effect due to DM, light scalars as DM
- **GW as probes of cosmology** $\cdot \epsilon$. e.g. standard sirens (part of cosmology with GW), or interaction with DE

Caveat: Reliance on specific models of DM and DE

Thomas P. Sotiriou – The science of 3G GW detectors, Berlin, October 21st 2019

Waveform

taken from B. P. Abbott et al. (LIGO -Virgo) Phys. Rev. Lett. 116, 061102 (2016)

Propagation effects- $E^2 = m_g^2 \pm M_1 p + c_g^2 p^2 \pm \frac{p^3}{M_3} \pm \frac{p^4}{M_4^2} + \ldots$

- Strong bound on the mass of the graviton, M_1, M_3 $\cdot \epsilon$.
- But marginally interesting from a theory perspective $\cdot \epsilon$.
- Weak bounds on M_4 in eV range $\cdot \epsilon$.
- Strong constraint from BNS and EM $\cdot \epsilon$.

 $|\Delta c_a/c| \lesssim 10^{-15}$

This rules out several dark energy models that predict $c_q \neq c$

But we can do better in constraining Lorentz violations by looking for other polarisations!

T.P.S., Phys. Rev. Lett. 120, 041104 (2018); A. E. Gumrukcuoglu, M. Saravani and T.P.S., Phys. Rev. D 97, 024032 (2018).

Waveform

taken from B. P. Abbott et al. (LIGO -Virgo) Phys. Rev. Lett. 116, 061102 (2016)

Parametrizations vs. theories

Advantages of parametrizations:

We do not need to know the theory! $\cdot \epsilon$.

Disadvantages of parametrizations:

- They only get us half way there they need $\cdot \epsilon$ interpretation in terms of a theory
- They give us a false sense of achievement constraints $\cdot \epsilon$. can be meaningless or not independent
- They have limited range of validity $\cdot \epsilon$

We need theory-specific tests as well!

Extracting new physics

Step-by-step guide for your favourite candidate:

- Study compact objects and determine their properties $\cdot \epsilon$ **Signatures**: hair, tidal properties, etc.
- Model the inspiral (post-Newtonian) $\cdot \epsilon$. **Signatures**: new polarizations, dephasing, tidal effects…
- Model the ringdown (perturbation theory) $\cdot \epsilon$. **Signatures**: different QNM spectrum **Hurdle:** non-separability, non-trivial background
- Do full-blown numerics to get the merger $\cdot \epsilon$ **Signatures**: various/unknown **Hurdle:** initial value formulation and well-posedness

Well-posedness

Interesting theories tend to look ill-posed, e.g.

- **Lorentz symmetry**: Einstein-aether theory, Horava gravity $\cdot \epsilon$. *Faster than light propagation*
- **Mass of the graviton:** massive and bimetric gravity $\cdot \epsilon$. *Multiple metrics*
- **Parity:** dynamical Chern-Simons gravity $\cdot \epsilon$. *3rd order equations*

"Screening" requires nonlinearity and derivative interactions which also leads to seemingly ill-posed theories

No-hair theorems also suggest that obviously well-posed theories are unlikely to be very interesting in strong field

Low vs high frequencies

Thomas P. Sotiriou – The science of 3G GW detectors, Berlin, October 21st 2019

Theoretical input

◆ Mass can suppressed deviations during early or even late inspiral

F. Ramazanoglu and F. Pretorius, Phys. Rev. D 93, 064005 (2016)

- **→** Emission might be strongly system dependent
	- o Scalarization

T. Damour and G. Esposite-Farese, Phys. Rev. Lett. 70, 2220, (1993) D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120 131103 (2018) H. O. Silva et al., Phys. Rev. Lett. 120, 131104 (2018)

o Curvature couplings

M. Okounkova et al., Phys. Rev. D 96, 044020, (2017) H. Witek et al., Phys. Rev. D 99, 064035 (2019)

v Lack of simulations and prediction means limited insight beyond inspiral

Prospects

- Plenty of new physics to be tested $\cdot \epsilon$.
- Alternative theories can 'parametrize' it in the strong field $\cdot \epsilon$ regime
- But new physics is always speculative and subject to $\cdot \xi$. change!
- Detecting and constraining it should certainly be a goal, $\cdot \epsilon$ and it is high risk – high gain

Well-posedness

Sometimes things are better than they seem…

Einstein-aether theory appears to be well-posed $\cdot \epsilon$.

Sometimes things are complicated… O. Sarbach, E. Barausse, and J. A. Preciado-Lopez, Class. Quant. Grav. 36, 165007 (2019)

Horava gravity is an elliptic-hyperbolic problem $\cdot \epsilon$.

D. Blas and S. Sibiryakov, Phys. Rev. D 84, 124043 (2011) M. Colombo, J. Bhattacharyya, and T.P.S, Class. Quant. Grav. 33, 235003 (2016) J. Bhattacharyya, A. Coates, M. Colombo, and T.P.S., Phys. Rev. D 93, 064056 (2016)

Sometimes things are probably just bad

General scalar-tensor theories are not strongly $\cdot \epsilon$. hyperbolic in generalized harmonic gauge in weak field

G. Papallo, and H. S. Reall, Phys. Rev. D 96, 044019 (2017)

Numerics suggest that they are ill-posed for certain data $\cdot \epsilon$.

J. L. Ripley, and F. Pretorius, Phys. Rev. D 99, 084014 (2019)