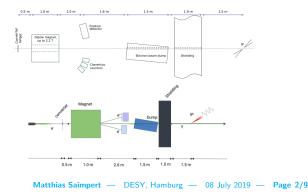
Bremsstrahlung photon beam monitoring.

LUXE weekly meeting

Matthias Saimpert

DESY


08 July 2019

Motivations

- Monitoring of the bremsstrahlung photon beam upstream from the IP
 - most important: determine number of photons at the IP (with E > 7 GeV?)
 - **bonus:** energy spectrum, repartition (x, y, z) of these photons
- Measurement of $\gamma^*
 ightarrow e^+e^-$ after the conversion target
 - e^+ and e^- deflected by a 1 meter-long, 2T magnet
 - Cherenkov counters (e⁻), possibility for a more evolved detector for e⁺

Simulation and analysis tools

- GEANT4 simulation performed by Sasha

ROOT ntuples containing e⁻, e⁺ and γ, 10cm downstream from the conversion target (no magnet)

/afs/desy.de/group/flc/luxe/bremsstrahlung/

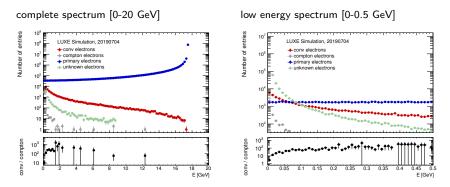
- 1 unique XFEL bunch with 100 times less electrons simulated
- simulation setup described here
- Analysis code started by myself (work in progress)
 - ROOT-based analysis running on the batch system on the NAF https://username@stash.desy.de/scm/brem/bremphoton_analysis.git
 - README included, everbody welcome to test the code and to contribute

First results

- Particles in the ntuples:

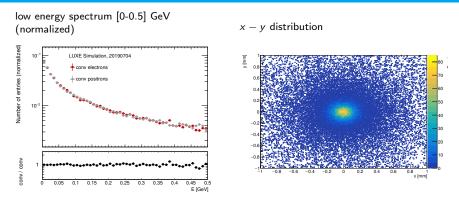
- = 96,941,816 electrons: \rightarrow 96.5% primaries, 3.4% unknown, 0.08% from conversions, 0.003% from Compton
- **27,004,279 photons** \rightarrow only 72 not from brem (classified as "unknown")
- 79,263 positrons → all from conversions

- First plots made:


- properties of electrons, positrons and photons
- comparison between the various types of electrons, positrons and photons, etc

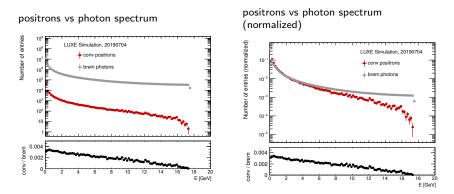
- Very first (naive) thoughts/considerations for a measurement

Electron energy spectrum



- large tail of primary electrons at low energy ightarrow large background for e^- detector
- "unknown" electrons peaks at very low energy, sizable also at higher $E~(S/B\sim 10)$
- Compton electrons sub-dominant, S/B \sim 100 for E > 200 MeV

Positrons (1/2)


- same energy spectrum and number of e^+ than e^- from conversion ightarrow OK

- $\sigma_x \sim \sigma_y \sim 100 \mu m$, $\sigma_z \sim 25 \mu m$. 57% of the positrons have E < 500 MeV,
- Magnet: 2T, 1 meter long
 - acceptance starts at $E \sim p_z \sim 500$ MeV (curvature radius ~ 1 m)?

Positrons (2/2)

- $N_{e^+}/N_\gamma \sim$ few 1e-3 and decreases linearly with E

- positron carries on average half converted γ energy, softer e^+ spectrum expected
- conversion rate and energy dependence? to be studied

Measurement idea (positrons)

count the number of positrons falling in the counter acceptance

 \rightarrow deduce $N_{_{e^+}}^{
m acc}$ within 500 MeV - XXX GeV range (from acceptance)

- 2 use positrons/photons correlations to reconstruct total number of photons
- **3** use electron measurement to derive data-driven corrections to the correlation model (?)
- Remarks
 - critical parameters: detector acceptance (positron energy range) and efficiency (number of positrons), positrons/photons correlation model
 - **correlation model:** conversion rate as a function of photon energy, $\gamma \rightarrow e^+$ energy splitting function (1/2?)

electron measurements: helpful to derive data-driven corrections?

Conclusion and outlook

- First look at bremsstrahlung photon beam monitoring

- ntuples produced by Sasha
- analysis code started on bitbucket, people welcome to use it and contribute

- Electron detector will be busy

- significant low energy XFEL e^- beam remnant ($S/B \sim 0.01$, decrease with E)
- "unknown" electrons to investigate further $(S/B \sim 10)$
- Compton electrons a priori not an issue (S/B > 100)

Positron detector

- acceptance (energy range) and efficiency (multiplicity) crucial parameters
- acceptance < 0.4 with a 1-meter long 2T magnet (to be checked ...)?</p>
- $e^+ \rightarrow \gamma$ extrapolation model inputs:
 - conversion rate (+E-dependence)
 - $e^+
 ightarrow \gamma$ energy splitting function (1/2?)
 - use electrons to constrain/correct extrapolation model?

Bremsstrahlung photon beam monitoring.

Back-up slides

Matthias Saimpert

DESY, Hamburg

08 July 2019

