Inclusive and jet associated prompt photon production in k₊-factorization

Maxim Malyshev¹

*in collaboration with Hannes Jung*² *Artem Lipatov*¹

¹SINP, M.V. Lomonosov Moscow State University ²DESY, Hamburg

Outline

- 1. Motivation
- 2. k_T -factorization approach

 Inclusive prompt photon, hadroproduction
Prompt photon with associated heavy quarks jets, hadroproduction
Prompt photon jets, photoproduction
Prompt photon with jets, hadroproduction

7. Conclusion

Motivation

• **Prompt photons** — produced in the hard subprocess (rather than in meson decays);

 Insensitive to the final-state hadronisation direct probe of the hard subprocess dynamics;

 test of different parton distribution functions in proton;

• Background to many SM and BSM processes.

Motivation

• k_T -factorization approach — efficient tool to study high energy physics processes, based on BFKL or CCFM evolution equations;

• CASCADE3: k_T -factorization with parton showers.

k_{τ} -factorization

Main ingredients:

- Off-shell matrix elements
- TMD (unintegrated) parton densities.

The cross-section:

 $d\sigma(pp\to\gamma+X)=d\sigma(a^*b^*\to\gamma+X)\otimes$

$$\otimes f_a(x_1, k_{T1}^2, \mu_{\text{fact}}^2) f_b(x_2, k_{T2}^2, \mu_{\text{fact}}^2)$$

k_T-factorization: off-shell matrix elements

• Off-shell gluon polarization sum (BFKL rule):

$$\epsilon_{\mu}\epsilon_{\nu}^{*} = \frac{k_{T}^{\mu}k_{T}^{\nu}}{\mathbf{k}_{T}^{2}}$$

Reggeized partons

q*qy-vertex: $\Gamma^{\mu}(k,q) = \gamma^{\mu} - \hat{k} \frac{l^{\mu}}{(l q)},$

$$k = xl + k_T$$

k_T-factorization: off-shell matrix elements

• BCFW recursion + method of auxilliary quarks (KaTie [A. Van Hameren, Comput.Phys.Commun. **224** (2018) 371]).

k_{τ} -factorization: TMDs

1) KMR prescription at LO and NLO (MRW)

A procedure to introduce **k**_T at the last step of DGLAP evolution [M. Kimber *et al.*, Phys.Rev. **D94** (2001) 114027, Eur.Phys.J. **C31** (2003) 73; A.D. Martin, et al., Eur.Phys.J. **C66** (2010) 73].

$$f_g(x, k_T^2, \mu^2) = T_g(k_T^2, \mu^2) \frac{\alpha_S(k_T^2)}{2\pi} \times \\ \times \int_x^1 dz \left[\sum_q P_{gq}(z) \frac{x}{z} q\left(\frac{x}{z}, k_T^2\right) + P_{gg}(z) \frac{x}{z} g\left(\frac{x}{z}, k_T^2\right) \Theta\left(\frac{\mu}{\mu + k_T} - z\right) \right] \\ f_q(x, k_T^2, \mu^2) = T_q(k_T^2, \mu^2) \frac{\alpha_S(k_T^2)}{2\pi} \times \\ \times \int_x^1 dz \left[P_{qq}(z) \frac{x}{z} q\left(\frac{x}{z}, k_T^2\right) \Theta\left(\frac{\mu}{\mu + k_T} - z\right) + P_{qg}(z) \frac{x}{z} g\left(\frac{x}{z}, k_T^2\right) \right]$$

k_{τ} -factorization: TMDs

2) CCFM-based unintegrated distributions Numerical solutions of Catani-Ciafaloni-Fiorani-Marchesini evolution equation.

The starting distribution is chosen to satisfy data on proton structure functions $F_2(x,\mu^2)$ only (A0, JH2013-set-1) or both $F_2(x,\mu^2)$ and $F_2^{\ c}(x,\mu^2)$ (JH2013-set-2) [H. Jung, hep-ph/0411287, F. Hautmann, H. Jung, Nucl. Phys. **B883** (2014) 1].

Only gluons and valence quarks. Sea quarks can be obtained from gluons in the last splitting.

Isolation criterion

Standard isolation experimental cuts:

$$E_{\tau}^{\text{had}} \leq E^{\text{max}}$$
$$(\eta^{\text{had}} - \eta)^2 + (\varphi^{\text{had}} - \varphi)^2 \leq R^2$$

significantly reduces fragmentation contributions (so they are not taken into account in the work)

Inclusive prompt photon, hadroproduction

 k_{T} -factorization for inclusive prompt photon production:

• M.A. Kimber et al. Eur.Phys.J. **C12** (2000) 665;

• T. Pietrycki, A. Szczurek, Phys.Rev. **D75** (2007) 014023;

- A.V. Lipatov, N.P. Zotov, J.Phys. **G34** (2007) 219;
- S.P. Baranov et al. Phys.Rev. **D77** (2008) 074024 (first calculation for $g^* + g^* \rightarrow \gamma + Q + \overline{Q}$);
 - A.V. Lipatov et al. Phys.Lett. **B699** (2011) 93;
- A.V. Lipatov, M.A.M., Phys.Rev. **D94** (2016) 034020.

DESY seminar, June, 12, 2019

Inclusive prompt photon, hadroproduction

A.V. Lipatov, M.A.M., 2016:

•2 \rightarrow 2 off-shell subprocesses with k_T -factorization:

 $q^* + g^* \rightarrow \gamma + q$ $a^* + \overline{q}^* \rightarrow \gamma + q$

•2 \rightarrow 3 subprocess with collinear factorization:

 $q + q' \rightarrow \gamma + q + q'$

• KMR at NLO

Inclusive prompt photon, hadroproduction

Inclusive prompt photon, hadroproduction

 k_T -factorization for $\gamma + c$, *b*-jet:

- S.P. Baranov et al. Eur.Phys.J. **C56** (2008) 371;
- A.V. Lipatov et al. JHEP **1205** (2012) 104;
- V.A. Bednyakov et al. Eur.Phys.J. C79 (2019) 92.

 \bar{q}

q

g

A.V. Lipatov et al., 2012:

•2 \rightarrow 3 subprocesses with k_T-factorization:

$$g^* + g^* \to \gamma + Q + \overline{Q}$$
$$q^* + \overline{q}^* \to \gamma + Q + \overline{Q}$$
$$q^* + Q \to \gamma + q + Q$$

• KMR at LO

From D0 Coll. Phys.Lett. B719 (2013) 354

From CDF Coll. Phys.Rev. Lett. 111 (2013) 042003

V.A. Bednyakov et al., 2019:

• Subprocess taken in k_T -factorization:

 $g^* + g^* \rightarrow \gamma + c + \overline{c}$

•Subprocesses taken in collinear factorization:

 $q + \overline{q} \rightarrow \gamma + c + \overline{c}$ $q + c \rightarrow \gamma + q + c$ $q + g \rightarrow \gamma + q + c + \overline{c}$

• JH2013set1 + CTEQ66

√S=8 TeV

 k_T -factorization for γ + jet in photoproduction at HERA:

• A.V. Lipatov and N.P. Zotov, Phys.Rev. **D72** (2005) 054002;

• A.V. Lipatov and N.P. Zotov, Phys.Rev. **D81** (2010) 094027;

- A.V. Lipatov et al. Phys.Rev. D88 (2013) 074001;
- B.A. Kniel et al. Phys.Rev. **D89** (2014) 114016;

A.V. Lipatov et al., 2013:

•Subprocess taken in k_T -factorization:

 $\gamma + g^* \rightarrow \gamma + q + q$

•Subprocesses taken in collinear factorization:

 $\gamma + q \rightarrow \gamma + q + g$ $\gamma + g \rightarrow \gamma + g$

«Naive» approach to obtain evolution jets:

From ZEUS Coll. Phys.Lett. B730 (2014) 293

 k_T -factorization for γ + jet in hadroproduction:

• T. Pietrycki and A. Szczurek, Phys.Rev. **D76** (2007) 034003;

• A.V. Lipatov and N.P. Zotov, Phys.Rev. **D90** (2014) 094005;

√S=8 TeV

Solid: CCFM A0 predictions

Dash-dotted: KMR predictions

From A.V. Lipatov and N.P. Zotov, 2014

H. Jung, A.V. Lipatov, M.A. Malyshev, in preparation:

•Subprocess taken in k_T -factorization:

 $g^* + g^* \rightarrow \gamma + q + \overline{q}$

Calculated with newly developed Monte-Carlo generator PEGASUS (A.V. Lipatov, S.P. Baranov, M.A. Malyshev, in preparation, available soon)

•Subprocesses taken in collinear factorization:

 $q_{v} + g \rightarrow \gamma + q$ $q + \overline{q} \rightarrow \gamma + g$ $q + \overline{q} \rightarrow \gamma + q' + \overline{q}'$ $q + q' \rightarrow \gamma + q + q'$

• JH2013 set 1 and 2

30

Parameters

- Theoretical uncertainties are connected with the choice of the factorization and renormalization scales. We took $\mu_R = \xi E_T \gamma$. For JH2013 TMDs we took $\mu_{F^2} = (s + Q_T^2)$, where *s* and Q_T^2 are the energy of scattering subprocess and transverse momentum of the incoming off-shell gluon pair, respectively. We varied the scale parameter ξ between 1/2 and 2 about the default value $\xi = 1$.
- We use 2-loop (in k_T-factorization) or 1-loop (in collinear case) formula for the strong coupling constant $\alpha_s(\mu^2)$ with $n_f = 4$ active quark flavors at $\Lambda_{QCD} = 200 \text{ MeV}$. $\alpha_{em} = 1/137$.
- Parton showers are produced with CASCADE (in k_T -factorization) or Pythia (in collinear case).
- We use anti- k_T -algorythm to construct jets with FastJet.

10²

10⁻³

Numerical results: γ+ jet

√S=7 TeV

Dashed: JH2013set1 (ISR)

Dash-dotted: «naive approach»

100

p^Y_T [GeV]

JH'2013 set 1

32

Numerical results: γ+ jet

From CMS Coll., JHEP **1406** (2014) 009.

Numerical results: γ+ jet

Numerical results: γ+ jet

√S=7 TeV

Dashed: JH2013 (ISR)

Dash-dotted: «naive approach»

PEGASUS

- parton level Monte-Carlo event generator for pp processes;
- can work with TMDs;
- a lot of implemented processes (heavy quarks, quarkonia, etc.);
- can generate an event record according to the Les Houches Event (*.lhe) format;
- an easy way to implement various kinematical restrictions;
- compatible with HEPData repository https://www.hepdata.net;
- built-in plotting tool PEGASUS Plotter

PEGASUS Particle Event Generator: A Simple-in-Use System

Set and an					Construction of the	
Tet parean	Inclusive B meson production Inclusive Bc meson production Inclusive (Y25) production Inclusive Y(25) production Inclusive non-prompt (J/Q production Inclusive non-prompt (J/Q production Inclusive non-prompt (J/S) production			age Cohen assurg production		C6 Bc
TMD factorization				AD (CCPU)		
2nd parton				B0 (CCFM)	80 (CCFM) JH/2013 set 1 (CCFM) JH/2013 set 2 (CCFM)	
TMD factorization				JH2013 set 2 (CCFM)		B: 2* B: 3* H: -1* H: 1*
Calificate particles	Inclusive Higgs boson production (diphoton Inclusive Higgs boson production (WW decay	decay mode) v model		PB-NLO-HERAI-IF2018 set 1 PB-NLO-HERAI-IF2018 set 2	PB-NLO-HERAIHI 2018 set 1 PB-NLO-HERAIHI 2018 set 2	
proton + proton (LHC)		,		MD/2018 (CCFM)	MD/2018 (CCFM)	Teouro
Total energy (GeV): 7000.00				Hard scales		and the second
	Advanced settings - ^			Renormalization scale	Advanced settings	- Annation
Monte-Carlo parameters:				produced particle transwerse mass	# HEP & SM parameters	- Self Marine
Number of iterations 10	Common Observables			Factorization scale		
Events per iteration	Kinematical range	to a		Contraction		
	First b-quark range	trom	10	default		
	Transverse momentum (Seld)		500			
	cariday		2	Generate Les Houches Event file (*.Ihe)		
	manufe, canidity	.7	7			
	Second bound came	~			🛪 Gancel 🚽 G	x Participant
	Processor momentum (Sold)		500			and the second second
	condense montentarin (dev)					and the second s
	reporty	-4		•		
	Increase statistics at large traces	WANTER FRAMEWORK				
C Save log output				-		
		×	Cancel		and the second second	

A.V. Lipatov, S.P. Baranov, M.A. Malyshev, in preparation (2019)

Conclusion

- Study of prompt photon production in the k_{τ} -factorization has a long history and it has been continuously developing.

- The overview of the results shows, that various collider data can be described within the k_{τ} -factorization with CCFM-evolved gluons at a similar level, as in standard NLO calculations.

- We have significantly improved the scheme for inclusive and jet associated prompt photon production with taking into account subleading quark-subprocesses and TMD parton showers.

- The processes are sensitive to the TMDs.

- The calculations will be implemented in the new code PEGASUS.

Maxim Malyshev

DESY seminar, June, 12, 2019

Back up

DESY seminar, June, 12, 2019

k_{τ} -factorization: TMDs

3) PB unintegrated distributions

Unintegrated distributions are produced in the Parton branching method of the solution of DGLAP equation, by keeping kinematics during the solution process with angular ordering condition. [F. Hautmann et al. Phys.Lett. **B772** (2017) 446; JHEP **1801** (2018) 070; Phys.Rev. **D99** (2019) 074008]

Divergencies

- We do not use the concept of fragmentation functions obviously. In our approach the effect of final state radiation is already included in calculations at the level of partonic subprocess matrix elements (we have a 2 → 3 rather than 2 → 2 subprocesses). But as in the traditional approach the calculated cross sections can be split into two pieces: the direct and fragmentation contributions. They depend from fragmentation scale.
- In our calculations we take a scale μ as the invariant mass of the produced photon and any final quark and we restrict direct contribution to $\mu \ge M = 1$ GeV in order to eliminate the collinear divergences in the direct cross section. Then the mass of light quark m_q can be safely taken as zero. The numerical effects of M is really small. It is less important than other theoretical uncertainties (connected with choice of renormalization and factorization scales).

Fragmentation contributions

Definitions

$$\cos\theta^* = \operatorname{th}\frac{\Delta y}{2}$$

PEGASUS Particle Event Generator: A Simple-in-Use System

A.V. Lipatov, S.P. Baranov, M.A. Malyshev, in preparation (2019)

PEGASUS Particle Event Generator: A Simple-in-Use System

A.V. Lipatov, S.P. Baranov, M.A. Malyshev, in preparation (2019)