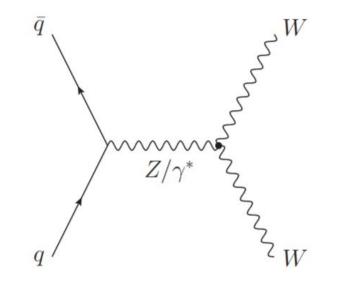
Measurement of fiducial and differential W+W⁻ production cross-sections at $\sqrt{s} = 13$ TeV with the ATLAS detector

Valerie Lang, DESY

HEP Experiment-Theory DESY Pizza Seminar 27.06.2019

- arXiv:1905.04242 -



Why measure WW production?

Gauge structure of the electroweak (EW) sector

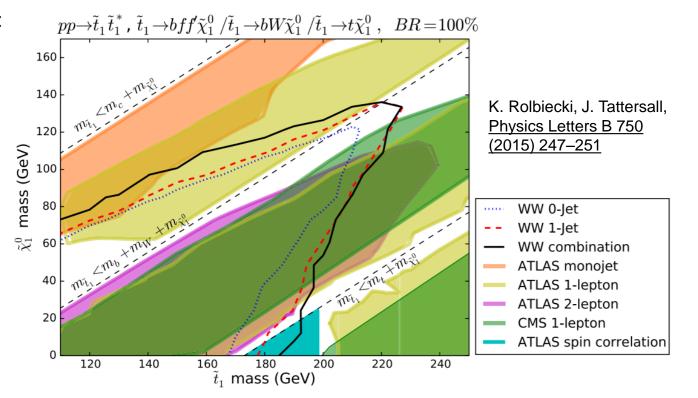
- Electroweak interactions in the SM
 - W and Z bosons couple to weak isospin
 - W bosons carry weak isospin
 - \rightarrow Non-abelian
 - \rightarrow Self-coupling in SM allowed in certain combinations, e.g. WWZ, (WW γ ,) WWZZ, WWWW
 - \rightarrow Triple (TGC) or Quartic Gauge Couplings (QGC)
- What about physics beyond the SM (BSM)?
 - Could increase TGC contributions \rightarrow anomalous TGCs (aTGCs) \rightarrow Enhance cross section
 - New contributions to SM Lagrangian $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i \longrightarrow$ Effective field theory (EFT) framework
 - Provide indirect bounds to BSM contributions \rightarrow Requires high precision measurement

 \rightarrow Measuring WW production = probe gauge structure of EW sector & check for BSM contributions

Why measure WW production?

Constraining models for new physics scenarios

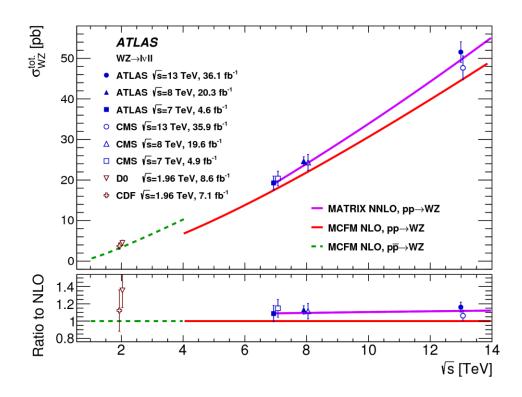
- WW precision measurements can also be interpreted to search for specific new physics scenarios
 - EW doublet or triplet scalars, degenerate or non-degenerate supersymmetric stops, compressed EW SUSY with low stop masses
 - Example: Light stop production with decays as:


$$\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 t$$
, if $m_{\tilde{t}_1} \ge m_t + m_{\tilde{\chi}_1^0}$,

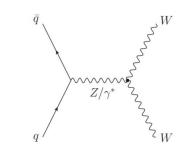
$$\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 W b$$
, if $m_{\tilde{t}_1} \ge m_W + m_b + m_{\tilde{\chi}_1^0}$,

$$\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 f f' b, \qquad \text{if } m_{\tilde{t}_1} < m_W + m_b + m_{\tilde{\chi}_1^0}.$$

with 100% branching ratios

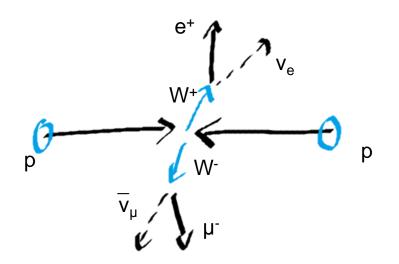

- CMS 8TeV WW measurement provides constraints where stop production looks very much like SM WW production
- W bosons almost on shell, b-jets too soft to be vetoed

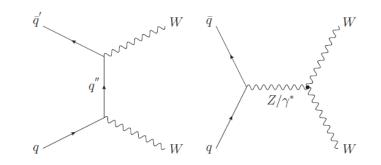
What to expect?


High precision measurement vs. prediction

- High precision measurements require higher order predictions
 - Leading order in perturbative quantum chromodynamics (QCD) for qq initiated production: $O(\alpha_s^0)$ i.e. not jet emission
 - Why do we need higher orders: NLO = $O(\alpha_S^1)$, NNLO = $O(\alpha_S^2)$?

Which measurement precision do we target?


Measurement	Precision on σ_{fid}
ATLAS 8TeV (IIvv) JHEP 09 (2016) 029	7.3 %
CMS 8TeV (total, different flavour, 0 jets) Eur. Phys. J. C (2016) 76:401	8.7 %

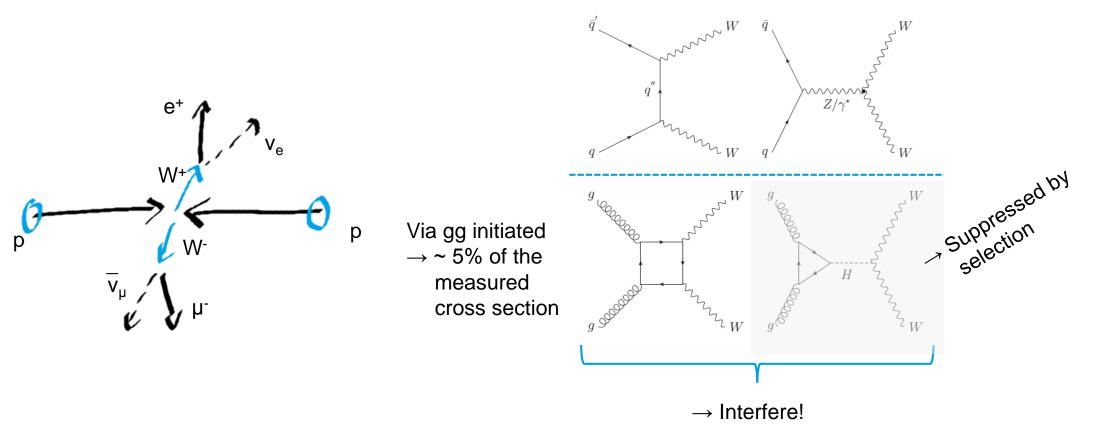

New measurement of WW production at 13 TeV by ATLAS

Based on 36.1fb⁻¹ data from 2015+2016

• Measurement of the $WW \rightarrow e\nu_e \ \mu\nu_\mu$ final state

• Contributing signal processes

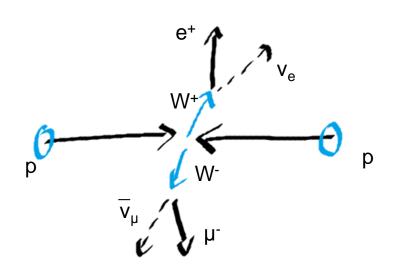
Via qq initiated \rightarrow Contains TGC vertex

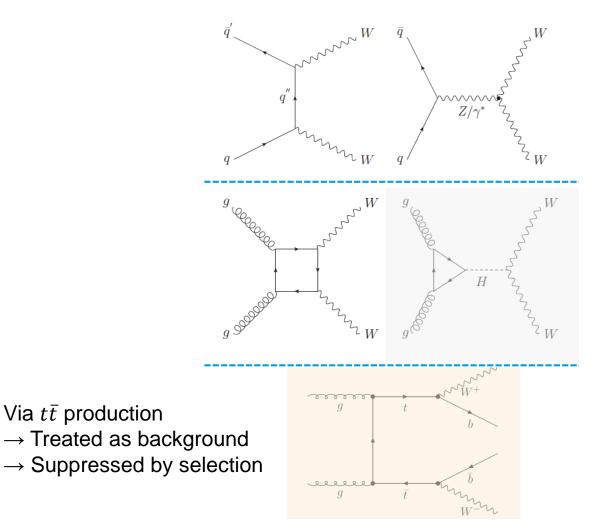

 \rightarrow Largest part of cross section

New measurement of WW production at 13 TeV by ATLAS

Based on 36.1fb⁻¹ data from 2015+2016

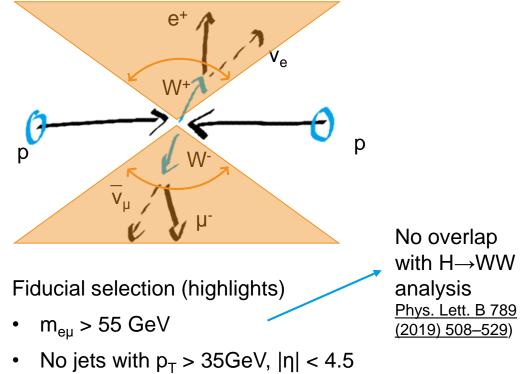
• Measurement of the $WW \rightarrow e\nu_e \ \mu\nu_\mu$ final state


• Contributing signal processes


New measurement of WW production at 13 TeV by ATLAS

Based on 36.1fb⁻¹ data from 2015+2016

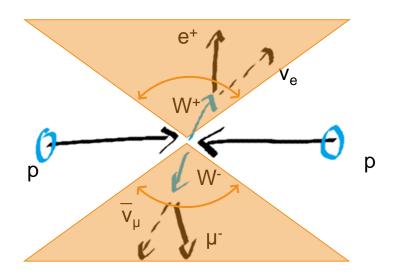
• Measurement of the $WW \rightarrow e\nu_e \ \mu\nu_\mu$ final state


• Contributing signal processes

Measurement of the fiducial cross section

Selection of events

- Restriction of phase space through selection
 - Reduce extrapolation into phase space areas where we don't have a detector



٠

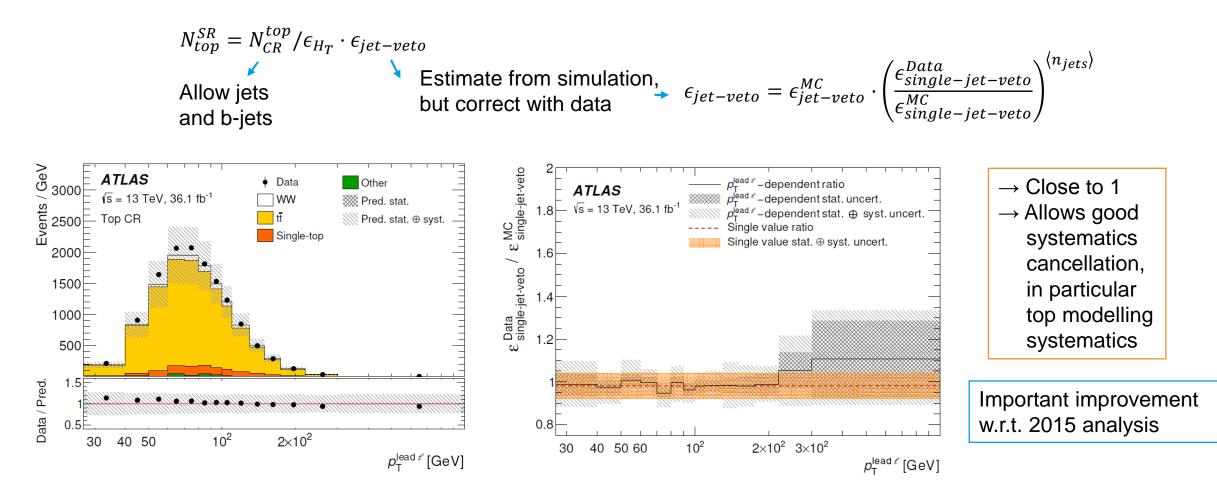
Measurement of the fiducial cross section


Selection of events

- Restriction of phase space through selection
 - Reduce extrapolation into phase space areas where we don't have a detector

- Fiducial selection (highlights)
 - $m_{e\mu} > 55 \text{ GeV}$
 - No jets with $p_T > 35 GeV$, $|\eta| < 4.5$ (optimized for smallest total uncertainty)

- In data \rightarrow Signal region selection (highlight)
 - + No b-tagged jets with p_{T} > 20GeV, $|\eta|$ < 2.5



- Largest background:
 - $t\bar{t} + Wt \rightarrow 26 \% \rightarrow partly data-driven$

Background from top production

Jet veto survival probability method (JVSP)

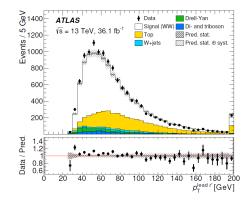
• Partly data-driven method \rightarrow Use data to correct predictions from top production MC simulation

How does the physics look without detector?

Unfolding from detector level to particle level

- Transform number of events in data to a cross section value
 - One bin \rightarrow Fiducial cross section

$$\sigma_{WW \to e\mu}^{\text{fid}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{C \times \mathcal{L}}$$


C-factor contains detector inefficiencies

 → relates reconstructed (SR) to true events (FR)

$$C = \frac{N_{SR}^{WW}}{N_{FR}^{WW}}$$

 \rightarrow Use WW simulation to obtain this value

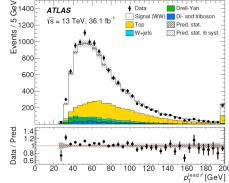
$$C = 0.613 \pm 0.019$$

How does the physics look without detector?

Unfolding from detector level to particle level

- Transform number of events in data to a cross section value
 - One bin \rightarrow Fiducial cross section

$$\sigma_{WW \to e\mu}^{\text{fid}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{C \times \mathcal{L}}$$


C-factor contains detector inefficiencies

 → relates reconstructed (SR) to true events (FR)

$$C = \frac{N_{SR}^{WW}}{N_{FR}^{WW}}$$

 \rightarrow Use WW simulation to obtain this value

$$C = 0.613 \pm 0.019$$

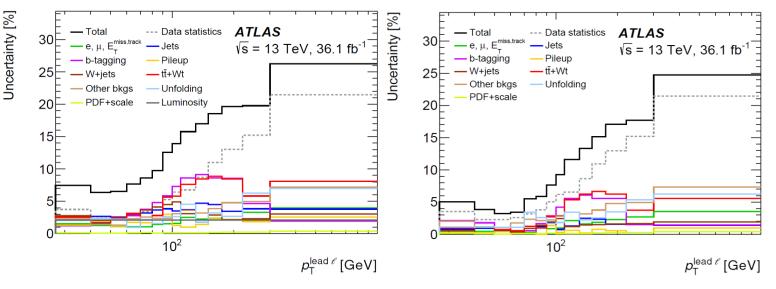
- Several bins \rightarrow Differential cross section
 - C-factor per bin \rightarrow Bin-by-Bin unfolding
 - Consider migrations \rightarrow Split into:
 - Fiducial correction, fi_{fid}
 - Unfolding matrix, M^{ij}
 - Reconstruction efficiency, ϵ_{reco}^{j}

Bayes' theorem

$$N_{\text{unf}}^{j} = \frac{1}{\varepsilon_{\text{reco}}^{j}} \sum_{i=1}^{n_{\text{bins}}^{\text{reco}}} \left[N_{\text{data}}^{i} - N_{\text{bkg}}^{i} \right] \cdot f_{\text{fid}}^{i} \cdot P(N_{\text{reco}}^{i} | N_{\text{true}}^{j}) P(N_{\text{true}}^{j}) / C^{i}$$

$$\rightarrow$$
 Iterate on the prior
 \rightarrow Iterative Bayesian unfolding

Systematic uncertainties in the WW measurement


Integrated and differential cross section

• Fiducial cross section uncertainties

Uncertainty source	Uncertainty [%]
Electron	0.7
Muon	0.9
Jets	3.0
<i>b</i> -tagging	3.4
E ^{miss,track}	0.4
Pile-up	1.6
W+jets background modelling	3.1
Top-quark background modelling	2.6
Other background modelling	1.3
Unfolding, incl. signal MC stat. uncertainty	1.4
PDF+scale	0.1
Systematic uncertainty	6.7
Statistical uncertainty	1.3
Luminosity uncertainty	2.1
Total uncertainty	7.1

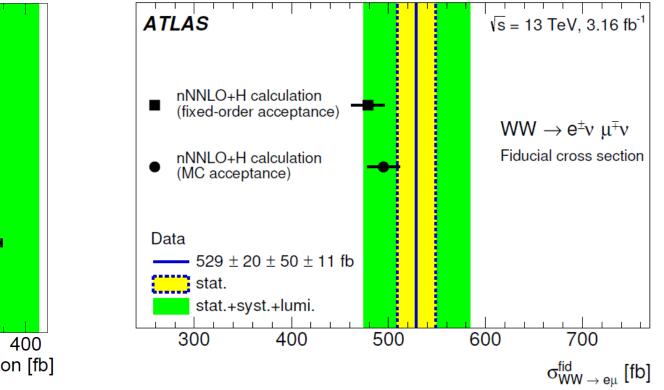
 \rightarrow Most precise measurement so far!

- Differential cross section uncertainties
 - Can look at absolute or normalized cross sections

- Normalized: Partial uncertainty cancellation, in particular luminosity uncertainty
- Statistically dominated at high leading lepton p_T

Systematic uncertainties in the WW measurement

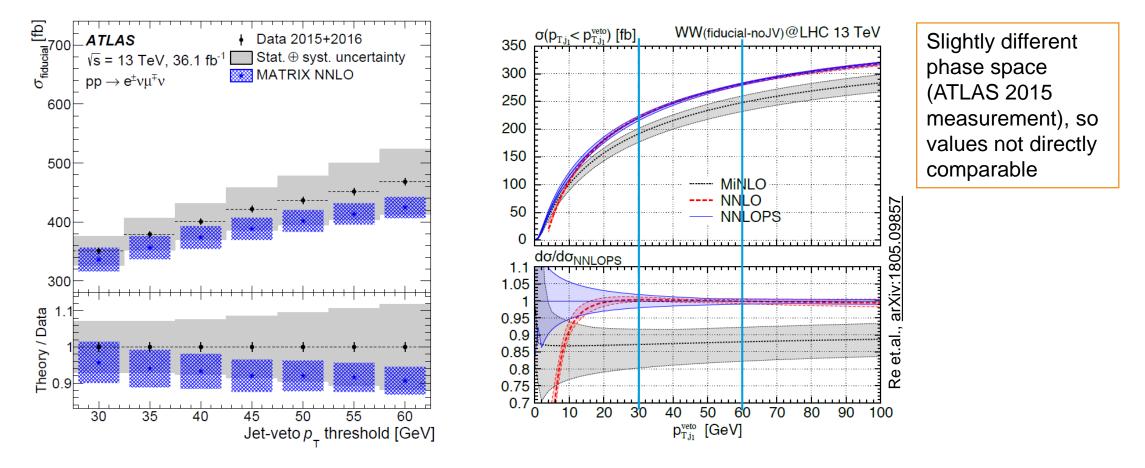
Looking at top systematics in detail


- Considered systematic variations
 - *tt*:
 - Matrix element generator → Madgraph5_aMC@NLO+Pythia8 (Powheg+Pythia8 nominal)
 - Parton shower generator → Powheg+Herwig7 (Powheg+Pythia8 nominal)
 - Variation of amount of additional radiation → h_{damp}=3m_t (1.5m_t nominal), variation of set of tuned parameters for the underlying event (tune A14), variation of renormalization and factorization scales (μ_R and μ_F)
 - Cross section uncertainty 6%
 - *Wt*:
 - Matrix element + parton shower generator → Madgraph5_aMC@NLO+Herwig++ (Powheg+Pythia nominal)
 - Variation of amount of radiation \rightarrow variation of tune (Perugia2012), variation of μ_R and μ_F
 - Different diagram removal scheme for the overlap between Wt and $t\bar{t}$
 - Cross section uncertainty 10%
 - JVSP method uncertainties
 - Variation of the exponent by ±1
 - Variation of H_T cut by ±20%

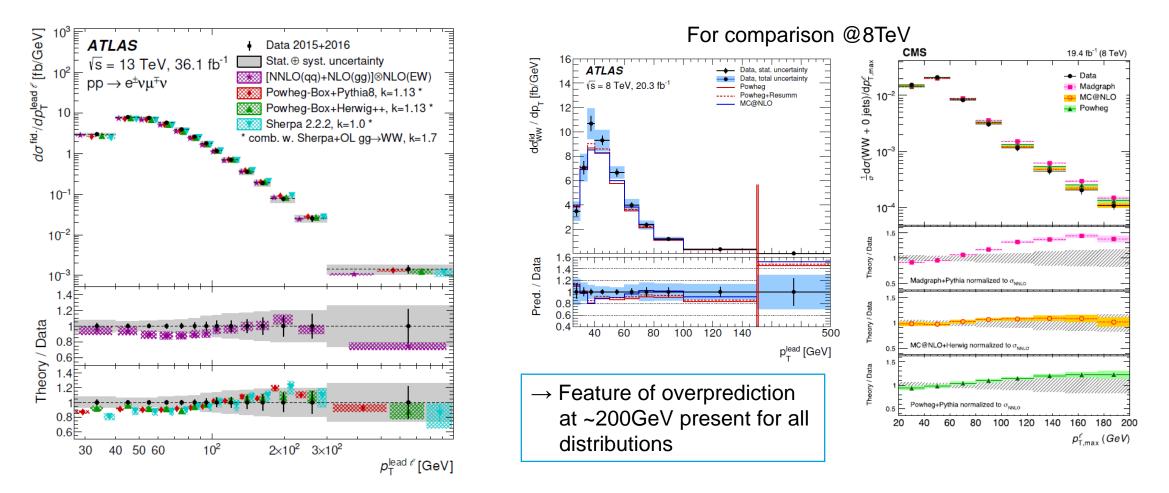
Integrated fiducial cross section

• Fiducial cross section in $WW \rightarrow e\nu\mu\nu$ channel

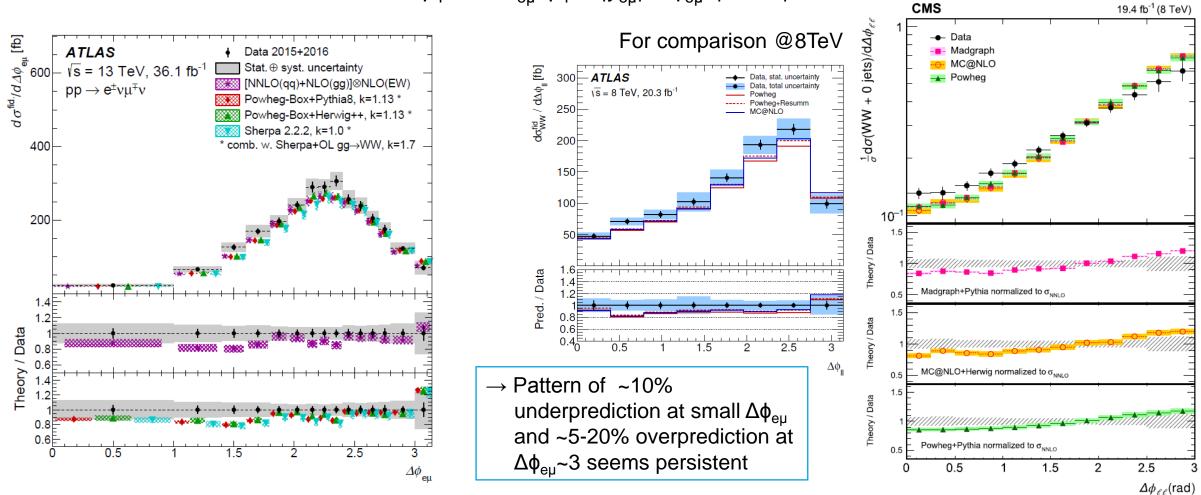
ATLAS ATLAS √s = 13 TeV, 36.1 fb⁻¹ $pp \rightarrow e^{\pm} v \mu^{\mp} v$ Data 2015+2016 379 ± 5 (stat.) ± 27 (syst.) fb MATRIX NNLO (incl LO $gg \rightarrow WW$) $357 \pm 4 (PDF) \pm 20 (scale) fb$ MATRIX NNLO + NLO $gg \rightarrow WW$ Data $368 \pm 4 (PDF) \pm 20 (scale) fb$ stat. (MATRIX NNLO + NLO gg)⊗ NLO EW $347 \pm 4 (PDF) \pm 19 (scale) fb$ 300 200 250 300 350 400 Integrated fiducial cross-section [fb]


For comparison: 2015 data only

• Prediction at lower boundary of uncertainty band, but agrees within uncertainties


Integrated fiducial cross section

- Measurement of jet kinematics in the absense of jets \rightarrow Cross section as function of jet-veto p_T threshold
 - Within measured range, jet-veto logarithms are small \rightarrow NNLO is valid description



Fiducial differential cross sections

• Measured 6 differential distributions: $p_T^{lead l}$, $m_{e\mu}$, $p_T^{e\mu}$, $|y_{e\mu}|$, $\Delta \phi_{e\mu}$, $|cos\theta^*|$

Fiducial differential cross sections

• Measured 6 differential distributions: $p_T^{\text{lead I}}$, $m_{e\mu}$, $p_T^{e\mu}$, $|y_{e\mu}|$, $\Delta \phi_{e\mu}$, $|\cos \theta^*|$

What do we learn from the data?

Limits in effective field theory (EFT) approach

- Fit unfolded data with EFT model (<u>EWdim6</u> w/ HISZ basis)
 - SM-interference & pure-EFT effects templates \rightarrow scale linearly or quadratically with Wilson coefficients c_i

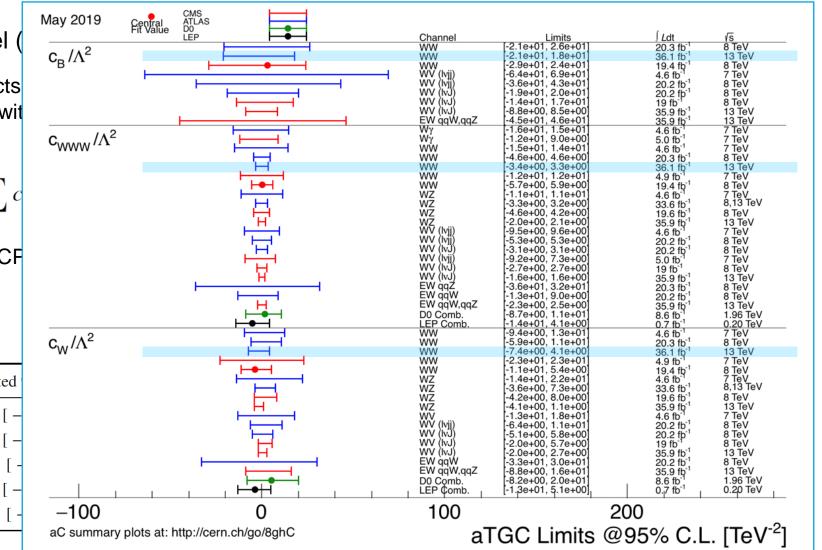
$$\sigma = \sigma_{\rm SM} + \sum_i c_i \sigma_{{\rm SM},i}^{\rm interf} + \sum_i c_i^2 \sigma_i^{\rm NP}$$

- Obtain limits in 3 CP-even and 2 CP-odd operators
- Use leading lepton p_T distribution

Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV ⁻²]
c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0, 3.0]
c_W/Λ^2	[-7.4,4.1]	[-6.4, 5.1]
c_B/Λ^2	[-21,18]	[-18,17]
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]
$c_{\tilde{W}}/\Lambda^2$	[-76,76]	[-91,91]

What do we learn from the data?

Limits in effective field theory (EFT) approach


- Fit unfolded data with EFT model
 - SM-interference & pure-EFT effects

 → scale linearly or quadratically wit coefficients c_i

$$\sigma = \sigma_{\rm SM} + \sum_i c_i \sigma_{{\rm SM},i}^{\rm interf} + \sum_i$$

- Obtain limits in 3 CP-even and 2 CF operators
- Use leading lepton p_T distribution

Parameter	Observed 95% CL [TeV ⁻²]	Expected
c_{WWW}/Λ^2	[-3.4, 3.3]	[-
c_W/Λ^2	[-7.4,4.1]	[-
c_B/Λ^2	[-21,18]	[-
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-
$c_{\tilde{W}}/\Lambda^2$	[-76 , 76]	[-

Summary

WW production at 13TeV in 36.1fb⁻¹ of data

- WW production measured at 13TeV by ATLAS <u>arXiv:1905.04242</u>
 - Fiducial cross section in jet-veto phase space \rightarrow jet-veto p_T optimized for smallest total uncertainty
 - Largest background $t\bar{t} + Wt \rightarrow$ Estimated with partly data-driven method for small top modelling uncertainty
 - Most precise WW measurement at LHC so far \rightarrow Uncertainty of 7.1%
 - Good agreement of NNLO predictions with data, though at lower uncertainty boundary
 - First differential measurement at 13TeV
 - Good agreement of NNLO predictions with data within uncertainties
 - Differential distributions statistically limited at large energy scales
 - Limits on contributions from EFT operators improved by factor > 2 in expected results compared to 8TeV

 \rightarrow Looking forward to full run 2 analysis with about four times the amount of data

Thanks for your attention

Previous WW measurements

CDF, D0, ATLAS and CMS

Measurement precision

Measurement	Precision on $\sigma_{\rm fid}$
CDF 1.96TeV (IIvv) Phys. Rev. Lett. 104, 201801	15.2 %
D0 1.96TeV (Ivqq, total) Phys. Rev. Lett. 108, 18180	23.3 %
ATLAS 7TeV (eµ channel only) Phys. Rev. D 87, 112001 (2013)	10.0 %
ATLAS 8TeV (IIvv) JHEP 09 (2016) 029	7.3 %
ATLAS 13TeV 2015 (eµ channel only) Phys. Lett. B 773 (2017) 354–374	11.0 %
CMS 7TeV (total) Eur. Phys. J. C (2013) 73:2610	9.7 %
CMS 8TeV (total, different flavour, 0 jets) Eur. Phys. J. C (2016) 76:401	8.7 %
CMS 13TeV 2015 (total, 0+1jet) CMS PAS SMP-16-006	9.5 %

Theoretical predictions for ATLAS WW measurements

History of publications

• 0-jet case

Analysis	Data set [fb ⁻¹]	Highest order prediction	Data	Prediction	Difference in σ_{exp}	Reference
WW@7TeV	4.6	NLO [MC@NLO (qq)+ GG2WW (gg)	51.9 \pm 2.0 (stat) \pm 3.9 (syst) \pm 2.0 (lumi) pb [total cross section]	44.7 ^{+2.1} -1.9 pb	2.1	<u>Phys. Rev. D 87,</u> <u>112001 (2013)</u>
WW@8TeV	20.3	NNLO	71.1 ±1.1 (stat) ^{+5.7} - _{5.0} (syst) ±1.4 (lumi) pb [total cross section]	63.2 ^{+1.6} - _{-1.4} (scale) ±1.2 (PDF) pb	1.4	<u>JHEP09 (2016)</u> <u>029</u>
WW@13TeV	3.16	nNNLO+H [NNLO (qq) + NLO (gg) + NLO (gg→H)	529 ±20 (stat.) ±50 (syst.) ±11 (lumi.) fb [fiducial]	478 ±17 fb	0.9	<u>Phys. Lett. B 773</u> (2017) 354
WW@13TeV	36.1	[NNLO (qq) + NLO(gg)]xNL O EW	379 ±5 (stat) ±27 (syst,incl lumi) fb [fiducial]	347 ±4 (PDF) ±19 (scale) fb	1.2	STDM-2017-24

Selections in 2015+2016 analysis

Fiducial vs. Signal region

• Fiducial region

Fiducial selection requirements			
>	27 GeV 2.5		
<	2.5		
>	55 GeV		
>	30 GeV		
>	20 GeV		
>	35 GeV, $ \eta < 4.5$		
	> < > > >		

Signal region

Selection requirement	Selection value	
p_{T}^{ℓ}	> 27 GeV	
η^{ℓ}	$ \eta^e < 2.47$ (excluding $1.37 < \eta^e < 1.52$),	
	$ \eta^{\mu} < 2.5$	
Lepton identification	TightLH (electron), Medium (muon)	
Lepton isolation	Gradient working point	
Number of additional leptons ($p_{\rm T} > 10 \text{ GeV}$)	0	
Number of jets ($p_T > 35$ GeV, $ \eta < 4.5$)	0	
Number of <i>b</i> -tagged jets ($p_{\rm T} > 20$ GeV, $ \eta < 2.5$)	0	
$E_{\rm T}^{\rm miss, track}$	> 20 GeV	
$\frac{E_{\rm T}^{\rm miss, track}}{p_{\rm T}^{e\mu}}$	> 30 GeV	
$m_{e\mu}$	> 55 GeV	

Selections in 2015 analysis

Fiducial vs. Signal region

• Fiducial region

Signal region

Fiducial selection requirement	Cut value
p_{T}^{ℓ}	> 25 GeV
$ \eta_{\ell} $	< 2.5
$m_{e\mu}$	> 10 GeV
Number of jets with $p_T > 25(30)$ GeV, $ \eta < 2.5(4.5)$	0
E ^{miss} T, Rel	> 15 GeV
E ^{miss}	> 20 GeV

Selection requirement	Selection value
p_{T}^{ℓ}	> 25 GeV
η^{ℓ}	$ \eta^{e} < 2.47$ (excluding 1.37 < $ \eta^{e} < 1.52$), $ \eta^{\mu} < 2.4$
Lepton identification	Tight (electron), Medium (muon)
Lepton isolation	Gradient working point
Number of additional leptons ($p_{\rm T} > 10 \text{ GeV}$)	0
m _{eµ}	> 10 GeV
Number of jets with $p_{\rm T} > 25(30)$ GeV, $ \eta < 2.5(4.5)$	0
Number of <i>b</i> -tagged jets ($p_T > 20$ GeV, 85% op. point)	0
E ^{miss} T, Rel	> 15 GeV
p_T ^{miss}	> 20 GeV

Selections in 2012 analysis

Fiducial vs. Signal region

• ATLAS

Fiducial region

	$e\mu$	$ee/\mu\mu$
$p_{\mathbf{T}}^{\ell}$ (leading/sub-leading)	> 2	5 / 20 GeV
$ \eta^{\ell} $	$ \eta^{\mu} < 2.4$	and $ \eta^e < 2.47$,
	excluding 1	$1.37 < \eta^e < 1.52$
$m_{\ell\ell}$	$> 10 { m ~GeV}$	$> 15 { m GeV}$
$ m_Z - m_{\ell\ell} $		$> 15 { m GeV}$
Number of jets with		
$p_{\rm T} > 25 \text{ GeV}, \eta < 4.5$	0	0
$ \mathbf{\Sigma} \mathbf{p}_{\mathrm{T}}^{ u_{\mathrm{i}}} $ if $\Delta \phi_{\ell} > \pi/2$	$> 15 { m ~GeV}$	$> 45 { m GeV}$
$ \mathbf{\Sigma} \mathbf{p}_{\mathrm{T}}^{\nu_{\mathrm{i}}} \times \sin\left(\Delta \phi_{\ell}\right) \text{ if } \Delta \phi_{\ell} < \pi/2$		
$(E_{\mathrm{T, Rel}}^{\mathrm{miss}})$		
Transverse magnitude of the vectorial sum of all neutrinos, $ \mathbf{\Sigma} \mathbf{p}_T^{\nu_i} $	$> 20 { m ~GeV}$	> 45 GeV
$(p_{ m T}^{ m miss})$		

• CMS

• (no table for fiducial region in paper)

Signal region

Signal region

	$e\mu$	$ee/\mu\mu$	
$p_{\rm T}^{\ell}$ (leading/sub-leading)	> 25 / 20 GeV		
$ \eta^{\ell} $	$ \eta^{\mu} < 2.4$ and $ \eta^{e} < 2.47$,		
	excluding 1	$1.37 < \eta^e < 1.52$	
Number of additional leptons with			
$p_{\rm T} > 7 {\rm ~GeV}$	0	0	
$m_{\ell\ell}$	> 10 GeV	$> 15 { m ~GeV}$	
$ m_Z - m_{\ell\ell} $		$> 15 { m ~GeV}$	
$E_{\rm T, \ Rel}^{\rm miss}$	$> 15 { m GeV}$	$> 45 { m GeV}$	
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 20 { m GeV}$	$> 45 { m GeV}$	
$\Delta \phi(\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	< 0.6	< 0.3	
Number of jets with			
$p_{\rm T} > 25 {\rm GeV}, \eta < 4.5$	0	0	

Variable	Different-flavor	Same-flavor
Opposite-sign charge requirement	Applied	Applied
$p_{\rm T}^{\ell}$ [GeV]	>20	>20
min(proj. $E_{\rm T}^{\rm miss}$, proj. track $E_{\rm T}^{\rm miss}$) [GeV]	>20	>20
DY MVA	-	>0.88 in zero-jet
		(>0.84 in one-jet)
$\frac{ m_{\ell\ell} - m_{\rm Z} }{[{\rm GeV}]}$	-	>15
$p_{\rm T}^{\ell\ell}$ [GeV]	>30	>45
$m_{\ell\ell}$ [GeV]	>12	>12
Additional leptons $(p_{\rm T}^\ell > 10 {\rm GeV})$	Veto	Veto
Top-quark veto	Applied	Applied
Number of reconstructed jets	<2	<2

At detector level

• Selected events in data and estimated contributions

	Number of events	Statistical uncertainty	Systematic uncertainty	(Dortiolly)
Top-quark	3120	± 50	±370	 (Partially) Data-driver
Drell-Yan	431	± 13	± 44	MC with
W+jets	310	± 60	± 280	validation
WZ	290	±11	± 33	region
ZZ	16	± 1	± 2	MC
$V\gamma$	66	±11	± 10	
Triboson	8	± 1	± 3	
Total background	4240	± 80	± 470	
Signal (WW)	7690	± 30	± 220	-
Total signal+background	11930	± 90	± 520	
Data	12 659	-	-	-

W+jets background in WW production

Matrix Method

- Background with at least one fake lepton \rightarrow Estimate data-driven \rightarrow Matrix method
 - How often do fake (real) leptons pass the tight SR identification, if they passed a looser ID before?
 → Measure ε_{real} & ε_{fake} in bins of η and p_T, separately for triggered and non-triggered leptons
 - Four equations

 $N^{\text{LL}} = N^{\text{LL}}_{\text{fake, fake}} + N^{\text{LL}}_{\text{real, fake}} + N^{\text{LL}}_{\text{fake, real}} + N^{\text{LL}}_{\text{real, real}}$ fake, fake + $\epsilon_{\text{fake}} N_{\text{real}, \text{fake}}^{\text{LL}} + (\epsilon_{\text{real}}) N_{\text{fake}, \text{real}}^{\text{LL}} +$ $N_{\text{Wjets}} = \epsilon_{\text{real}} \epsilon_{\text{fake}} N_{\text{real, fake}}^{\text{LL}} + \epsilon_{\text{fake}} \epsilon_{\text{real}} N_{\text{fake, real}}^{\text{LL}}$ In data $V_{\text{fake, fake}}^{\text{LL}} + \underbrace{\epsilon_{\text{real}}}_{\text{real, fake}}^{\text{LL}} + \underbrace{\epsilon_{\text{fake}}}_{\text{fake, real}}^{\text{LL}} + \underbrace{\epsilon_{\text{real}}}_{\text{real}}^{\text{LL}} + \underbrace{\epsilon_{\text{real}}^{\text{LL}} + \underbrace{\epsilon_{\text{real}}^{\text{LL}} + \underbrace{\epsilon_{\text{real}}}^{\text{LL}} + \underbrace{\epsilon_{\text{real}}^{\text{LL}} + \underbrace{\epsilon_{\text{real}}^{\text{$ N^{TL} $N_{\text{multijet}} = \epsilon_{\text{fake}}^2 N_{\text{fake, fake}}^{\text{LL}}$ real, real $V_{\text{fake, real}}^{\text{LL}} + (\epsilon_{\text{real}}^2) N_{\text{real, real}}^{\text{LL}}$ Solve for LL $\epsilon_{\text{fake}} + \epsilon_{\text{fake}} \epsilon_{\text{real}} N_{\text{real},\text{fake}}^{\text{LL}} + \epsilon_{\text{real}} \epsilon_{\text{fake}} N_{\text{real},\text{fake}}^{\text{LL}}$ N^{LL}real,fake/fake,real and N^{LL}_{fake,fake} \rightarrow Only 2.6% contribution in SR, but large uncertainty

Comparing ATLAS and CMS limits

Limits in effective field theory (EFT) approach

- Limits obtained from WW measurement
 - From differential cross section as function of p_T^{lead I}

Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV ⁻²]
c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0, 3.0]
c_W/Λ^2	[-7.4,4.1]	[-6.4, 5.1]
c_B/Λ^2	[-21,18]	[-18, 17]
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]
$c_{ ilde W}/\Lambda^2$	[-76 , 76]	[-91,91]

- Limits from 8 TeV ATLAS measurement
 - From reconstructed event counts

Scenario	Parameter	Expected $[\text{TeV}^{-2}]$	Observed $[\text{TeV}^{-2}]$
	C_{WWW}/Λ^2	[-7.62, 7.38]	[-4.61, 4.60]
EFT	C_B/Λ^2	[-35.8, 38.4]	[-20.9, 26.3]
	C_W/Λ^2	[-12.58, 14.32]	[-5.87, 10.54]

- Search for BSM contributions in WW and WZ events by CMS (<u>CMS PAS SMP-18-008</u>)
 - From reconstructed event counts

Parametrization	aTGC	Expected limit	Observed limit	Run I limit
	$c_{\rm WWW}/\Lambda^2~({\rm TeV}^{-2})$	[-1.44, 1.47]	[-1.58, 1.59]	[-2.7, 2.7]
EFT	$c_{\rm W}/\Lambda^2$ (TeV ⁻²)	[-2.45, 2.08]	[-2.00, 2.65]	[-2.0, 5.7]
	$c_{\rm B}/\Lambda^2~({\rm TeV^{-2}})$	[-8.38, 8.06]	[-8.78, 8.54]	[-14, 17]