

Heinrich Pette Institute, Leibniz Institute for Experimental Virology and European XFEL GmbH

Charlotte Uetrecht

Flying viruses - from biophysical to structural characterisation

HPI – member of Leibniz association

- Belonging to Leibniz association
- Focus on human pathogenic viruses

2/63

23-09-2019

MS in structural biology

Protein identification

- Bottom up or top down proteomics
- Posttranslational modifications
- New binding partners

Chemical modification

- Surface labelling
- Cross-linking
- Hydrogen/ deuterium exchange

- Binding interfaces
- Conformation and folding

3/63

MS in structural biology

- Higher order assemblies as functional form
- Native MS: complex dynamics at low resolution

Native MS workflow

European

- Affinity purification
- in vitro assembly
- (Whole cell top-down)
- Global structure
 - Stoichiometry
 - Topology
 - Shape
 - Dynamics
 - Binding affinity

23-09-2019

Nano-ESI ToF

- Gentle like MALDI
- Sample in solution
- Home-made capillaries
- Positive or negative ion mode
- "unlimited" mass range in time of flight

P3: 6 10⁻⁴ mbar P4: 2 10⁻² mbar P5: 2 10⁻⁶ mbar

R.H. van den Heuvel et al., Anal Chem 2006

- Hexapole pressure sleeve
- 2 Low frequency ion selecting quadrupole
- 3 High pressure collision cell
- 4 High transmission grids

7/63

5 Low repetition pusher in the TOF

23-09-2019

Mass determination

Native MS - up to viruses

Information from native MS

Stoichiometry

Shape/ Conformational change

10

Association

23-09-2019

Dynamics of viral Structures

11 Leibniz Association

- Caliciviridae
- Main cause of viral gastroenteritis
- Highly contagious

- +ssRNA
- Non-enveloped
- T = 3 capsid
- VP1: 530 aa, ~56 kDa
- Shell and protruding domain
- Glycans as attachment factor

B.V.V. Prasad et al., Science 1999

23-09-2019

Dynamics of viral Structures

Norovirus

Norovirus

- Binding studied with P domain lacksquare
- Fucose as attachment factor \bullet
- Effects on structural dynamics? ullet

14/63

Hydrogen/deuterium exchange

23-09-2019

Dynamics of viral Structures

15/63

Leibniz Association

23-09-2019

Dynamics of viral Structures

16/63

Leibniz Association

Peptide mapping

A. Mallagaray et al,. Nat Commun, 2019

23-09-2019

Dynamics of viral Structures

17/63 Leibniz Association

Asparagine deamidation

HPI Higher flexibility abrogates binding

Role of deamidation?

- 60% of all GII.4 with Asn
- $t_{1/2} = 1.5-2 \text{ d} @ 37^{\circ}\text{C}$
- Potential role in infection

P-dimer strain	sequence	37°C	5°C
GII.4 Saga	STDTEND		\bigcirc
GII.4 MI001	STDTSND	e	\bigcirc
GII.10 Vietnam	STWETQD	(\bigcirc
GII.17 Kawasaki	LRISDNDD	\bigcirc	\bigcirc

Also on VLP level

- 60% Asn373 deamidated after $t = 9 \text{ m} @ 5^{\circ}\text{C}$

GI.1 Norwalk norovirus capsid stability

Association

23-09-2019

Is stability a conserved feature?

And closely related GI.1 isolates?

• 13 aa substitutions: 7 conservative, 6 different

Pogan et al, J Phys Condens Matter 2018

Dynamics of viral Structures

26

Extension to other VLPs

European

23-09-2019

Dynamics of viral Structures

Leibniz Association

Processing SARS nsp7-10 regulatory region

Association

Determining processing order

Krichel et al., in preparation

FRET peptide assay

- Peptides are processed differently!
- Structural context is relevant

European

Nsp7+8 complexes

Nsp7+8 heterotetramers formed

Krichel et al., in preparation

23-09-2019

Nsp7+8 complexes in CID

Antigen presentation

Antigen presentation

European XFEL

- Study peptide binding
- For high affinity even at substoichiometric ratio
- Potential screening tool

HPI Structure of assembly intermediates?

Assembly model based on ion mobility data

The European XFEL

- X-ray free-electron laser (XFEL)
- 3.4 km long, linear accelerating
- In operation since Sep 2017
- User labs, 6 instruments

Properties

Dynamics of viral Str

- Femtosecond X-ray pulses
- Peak brilliance >> synchrotron
- Mostly coherent
- 27,000 pulses/s at European XFEL
- Higher brilliance and repetition rate than other XFELs:
 - Soft X-rays: FLASH (2005)
 FERMI (2011)
 - Hard X-rays: LCLS (2009)
 SACLA (2011)
 PAL-XFEL (2017)
 European XFEL (2017)

Why use European XFEL for biology?

23-09-2019

Dynamics of viral Structures

42 Leibniz Association

tion 🧹

Why use European XFEL for biology?

- Single particles require high intensity plasma explosion
 - Short fs pulses outrun destruction
 - Many images from different particles
 - Direct diffraction no separate phasing

Current injection systems

- High background
- Liquid water column
- Aerosol $V_{1 \mu m \text{ droplet}} = 106 \text{ x}$ $V_{10 \text{ nm object}}$
- Pulsing/Sorting difficult
- In silico classification/ alignment
 - t_{analysis} >> t_{acquisition}
 Similar for EM
- \rightarrow Sample delivery critical

M. Hantke *et al.*, *Nat Photonics* **2014**; T. Ekeberg *et al.*, *Phys Rev Lett* **2015**

23-09-2019

Dynamics of viral Structures

Leibniz Association

44

European XFFI

HPI The "ideal" sample delivery system

- Low sample consumption
 Timed particle release
- Natural environment
- No background gas or liquid
- Select species from a mixture
 - Pre-sorting
 - Speed up data analysis (also an issue in cryo-EM)

45

Why use native MS at European XFEL?

nanoESI

- low background & sample consumption
- 10,000 patterns in 16 min with 1 µm focus
- No buffer background at high source pressure

European

HPL Why use native MS at European XFEL?

Association

HPI Why use native MS at European XFEL?

Mass selection

16

130

digital ion filter frequency / kHz

140

- Purify low abundant species
- Digitally driven (Greifswald)

160

170

0.03

0.025

0.02

0.015

0.01

0.005

signal intensity / a.u.

(Csl) Cs1+

[(Csl)_Cs_]2*

Why use native MS at European XFEL?

European **XFEL**

Association

- Trap (Greifswald)
 - Time particle release with FEL
 - Increase ion density
 - Trapping capacity sufficient for 100 ms
 - No indication of structural damage

Why use native MS at European XFEL?

HPI Why use native MS at European XFEL?

European XFEL

- (Dipole orientation)
- ToF online diagnostics
 - Sample quality
 - Sample influx
 - Proper selection
- Current status
 - Testing all components
 - → experiments at FLASH I/II, PETRA III
 - \rightarrow Assemble prototype
 - → Proof-of-principle on norovirus capsids in 2020

J.Schulz et al., SPIE Proceedings 2013

Dynamics of viral Structures

51

23-09-2019

What about small complexes?

23-09-2019

Dynamics of viral Structures

53 Association

X-rays for top-down?

54

23-09-2019

WHPI Soft X-rays for protein fragmentation?

- Soft X-rays no structural resolution
- Instantaneous multiphoton absorption
- → Structural information?
- → Native top-down MS?

European

55

23-09-2019

Our QToF @ PETRA III P04

23-09-2019

Our setup

Backbone fragmentation in myoglobin

58

Association

23-09-2019

HPI Fragmentation/dissociation of sfGFP

European XFEL

59

Association

23-09-2019

Dissociation of hemoglobin

60

23-09-2019

Possible mechanisms

ullet

- Auger emission & cascade
- More efficient in large systems
- Auger emission & intermolecular Coulomb decay

61

Summary

- Viruses
 - Isolate specific dynamics/assembly
 - Single deamidation abrogates glycan binding
 - Polyprotein processing and complexation
 - Peptide binding to MHC
- X-rays beyond crystallography
 - Go well with gas phase ions!
 - Intermediates at high resolution?
 - New fragmentation technique?

European

Acknowledgements

- HPI: Alan, Jasmin, Knut, Ronja, Yinfei, Jürgen, Janine, Boris, AG77, Microscopy
- Heidelberg: G Hansman; Lübeck: T • Peters, A Mallagaray
- European XFEL: WP 79, SPB; DESY: P04, J Buck; Greifswald: L Schweikhardt, S Bandelow; MS Vision, Fasmatech
- TU Vienna: V Weiss, G Allmaier; IU • **Bloomington: MF Jarrold**
- EMBL Hamburg: R Meijers, M Garcia-• Alai; Jacobs University Bremen: S Springer

Funding: PIER Ideenfonds PIF-2013-10, DFG FOR2327 Virocarb, BMBF Visavix, FET Proactive Viruscan, ERC SPOCk'S MS, FET OPEN MS SPIDOC

für Bildung und Forschung

23-09-2019

FOR2327

Dynamics of viral Structures

e10

ViruScan<mark>ms spipo</mark>c

Hamburg

63

Bundesministerium für Gesundheit

Ministry of Science, Research and Equalities

European XFEL

