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Flying viruses - from biophysical to structural characterisation 



HPI – member of Leibniz association 

• Belonging to Leibniz association 
• Focus on human pathogenic viruses 

23-09-2019 Dynamics of viral Structures 2/63 



3/63 

MS in structural biology 

Protein identification 

• Bottom up or 
top down 
proteomics 

• Post-
translational 
modifications 

• New binding 
partners 

Chemical modification 

• Surface labelling 
• Cross-linking 
• Hydrogen/ 

deuterium 
exchange 

• Binding interfaces 
• Conformation and 

folding 
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MS in structural biology 

• Higher order assemblies as functional form 
• Native MS: complex dynamics at low resolution 
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Native MS workflow 
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• Affinity purification 
• in vitro assembly 
• (Whole cell top-down) 

 
• Global structure 

– Stoichiometry 
– Topology 
– Shape 
– Dynamics 
– Binding affinity 
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Nano-ESI ToF 

23-09-2019 Dynamics of viral Structures 

• Gentle like MALDI 
• Sample in solution 
• Home-made capillaries 
• Positive or negative ion mode 

 
• “unlimited” mass range in time of flight 
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Q-ToF 
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1 Hexapole pressure 
sleeve 

2 Low frequency ion 
selecting quadrupole 

3 High pressure 
collision cell 

4 High transmission 
grids 

5 Low repetition pusher 
in the TOF 

P1: 10 mbar     P2A: 8 10-3 mbar     P2: 4 10-3 mbar      
P3: 6 10-4 mbar     P4: 2 10-2 mbar     P5: 2 10-6 mbar 

R.H. van den Heuvel et al., Anal Chem 2006 
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Mass determination 
Two adjacent m/z peaks with Δz = 1: eg. 1414 and 1542.5 

 
1414.0  =  [M+nH] / n 
1542.5   =  [M+(n-1)H] / (n-1) 

 
nH   <<<  M 
1414.0 n =  [M] 
1542.5 (n – 1) =  [M] 

 
n = 1542.5/(1542.5-1414.0)  n =  12.00389 = 12 

 
solve first equation 1414   = [M+12 x 1.0078]/12 

 
      M = 16,955.91 Da 

1000 1500 2000 2500 3000 3500 4000 
m/z 

1212.1 

1131.6 

943.3 1414.0 

893.5 

1542.5 

848.9 
1696.4 

1884.6 

2119.9 808.5 

771.6 
2422.1 Charge distribution due to 

formation of [M + nH] n+ ions 
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Native MS - up to viruses 

• Denatured VP1 

Shoemaker et al., Mol Cell Proteomics 2010 
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• Buffered solution 
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Information from native MS 

23-09-2019 Dynamics of viral Structures 10 

Stoichiometry 
 
 

M = xA+yB 
Topology 

 
 

A bound to B 

P 
P 

P P P 
P 

+ 

Shape/ 
Conformational change 

 
 

Amount A or B 



Information from native MS 
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Norovirus 

• Caliciviridae 
• Main cause of viral gastroenteritis 
• Highly contagious 

 
• +ssRNA 
• Non-enveloped 
• T = 3 capsid 

 
• VP1: 530 aa, ~56 kDa 
• Shell and protruding domain 
• Glycans as attachment factor 

B.V.V. Prasad et al., Science 1999 
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Viral “lifecycle” 

C. Uetrecht & A. Heck, Angew Chem 2011 

van den Berg et al. Circ Res 2003 



Norovirus 

• Binding studied with P domain 
• Fucose as attachment factor 

 
• Effects on structural dynamics? 
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Tan et al., Plos One 2009, Goodfellow & Taube 2015 
 

Fucose 



Hydrogen/deuterium exchange 
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D2O 



Hydrogen/deuterium exchange 
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Peptide mapping 

 

A. Mallagaray et al,. Nat Commun, 2019 

23-09-2019 Dynamics of viral Structures 17/63 

fucose 

asparagine 



A. Mallagaray et al,. Nat Commun, 2019 

Asparagine deamidation 
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[M+2H]2+ 

[M+2H]2+ 

• Ion exchange 
chromatography 

• 100% deamidated or 
100% wildtype 
 



Glycan binding to wildtype 

 

A. Mallagaray et al,. Nat Commun, 2019 
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Higher flexibility abrogates binding 

 

A. Mallagaray et al,. Nat Commun, 2019 
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Role of deamidation? 

 
 

• 60% of all GII.4 with Asn 
• t1/2 = 1.5-2 d @ 37°C 
• Potential role in infection 

 
 
 

• Also on VLP level 
– 60% Asn373 deamidated after t = 9 m @ 5°C 
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P-dimer strain sequence 37°C 5°C 

GII.4 Saga STDTEND 

GII.4 MI001 STDTSND 

GII.10 Vietnam STWETQD 

GII.17 Kawasaki LRISDNDD 
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Viral “lifecycle” 

C. Uetrecht & A. Heck, Angew Chem 2011 



GI.1 Norwalk norovirus capsid stability 

Shoemaker et al, Mol Cell Proteomics 2010; Uetrecht & Heck Angew Chem Int Ed Engl 2011 
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• pH sensitive 
• Small T = 1 capsid 



Is stability a conserved feature? 

No pH 
sensitivity! 

Pogan et al, J Phys Condens Matter 2018 
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de Graaf et al, Nat Rev 
Microbiol 2016 

46% identity 

pH 8 

pH 10 

pH 7 

pH 9 

bar = 50 nm  



And closely related GI.1 isolates? 

Shoemaker et al, Mol Cell Proteomics 2010; Pogan et al, J Phys Condens Matter 2018 
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GI.1 Norwalk GI.1 West Chester 

Stronger pH 
sensitivity and 
small capsids! 



GI.1 Norwalk vs West Chester 

• 13 aa substitutions: 7 conservative, 6 different 
 

Pogan et al, J Phys Condens Matter 2018 
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Extension to other VLPs 
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• GEMMA for diameter 
 
 
 
 
 
 
 
 

• Saga and Vietnam 
resolved in MS 

 Hint why mainly T=1 

T = 3 

T = 1 

T = 1 

T = 3 

T = 1 
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Viral “lifecycle” 

C. Uetrecht & A. Heck, Angew Chem 2011 
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Coronaviral replication/transcription 
complexes 
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Coronaviruses 
– Mild cold to severe zoonoses 

(SARS, MERS) 
Polyprotein 

P 
P P P 

16 non-structural proteins 

Replication machinery 

Protease 
processing 



Processing SARS nsp7-10 regulatory 
region 

 

Krichel et al., in preparation 
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Determining processing order 
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Krichel et al., in preparation 



FRET peptide assay 

• Peptides are 
processed 
differently! 

• Structural 
context is 
relevant 
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Krichel et al., in preparation 



Nsp7+8 complexes 

• Nsp7+8 heterotetramers formed 
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Krichel et al., in preparation 



Nsp7+8 complexes in CID 

• Nsp8 dimer 
forms core 
 
 
 
 
 
 
 

• Antiparallel 
arrangement of 
heterodimers 

Krichel et al., in preparation 
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Viral “lifecycle” 

C. Uetrecht & A. Heck, Angew Chem 2011 



Antigen presentation 

• Soluble MHC 
construct folds with 
dipeptide 

• Disulfide stabilized 
MHC  

Anjanappa et al., in revision 
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Antigen presentation 

• Study peptide binding 
• For high affinity even at substoichiometric ratio 
• Potential screening tool 

Anjanappa et al., in revision 
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23-09-2019 Dynamics of viral Structures 38 

Viral “lifecycle” 

C. Uetrecht & A. Heck, Angew Chem 2011 



Structure of assembly intermediates? 

• Assembly model based on ion mobility data 

G.Shoemaker et al., MCP 2010; C. Uetrecht et al., Nat Chem 2011 
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The European XFEL 

• X-ray free-electron laser (XFEL) 
• 3.4 km long, linear accelerating 
• In operation since Sep 2017 
• User labs, 6 instruments 
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Properties 

• Femtosecond X-ray pulses 
• Peak brilliance >> synchrotron 
• Mostly coherent 
• 27,000 pulses/s at European XFEL 

 
• Higher brilliance and repetition rate 

than other XFELs: 
– Soft X-rays:  FLASH (2005) 
  FERMI (2011) 
– Hard X-rays:  LCLS (2009) 
 SACLA (2011) 
 PAL-XFEL (2017) 
 European XFEL (2017) 
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Why use European XFEL for biology? 

• High resolution structures from X-ray crystallography 
– Repetitive arrangement in crystal to increase signal 
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Why use European XFEL for biology? 

• Single particles require high intensity – plasma 
explosion 
– Short fs pulses outrun destruction 
– Many images from different particles 
– Direct diffraction – no separate phasing 

Scientific case: R. Neutze et al., Nature 2000  
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Current injection systems 

• High background 
 

• Liquid – water column 
 

• Aerosol – V1 µm droplet = 106 x 
V10 nm object 
 

• Pulsing/Sorting difficult 
 

• In silico classification/ 
alignment 
– tanalysis >> tacquisition 
– Similar for EM 

 
 Sample delivery critical 
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M. Hantke et al., Nat Photonics 2014; T. Ekeberg et al., Phys Rev Lett 2015 

Mimivirus reconstruction 

10 nm protein in 0.5 µm liquid jet 



The “ideal” sample delivery system 

• Low sample consumption 
– Timed particle release 

 
• Natural environment 

 
• No background gas or liquid 

 
• Select species from a mixture 

– Pre-sorting 
– Speed up data analysis (also an 

issue in cryo-EM) 
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Why use native MS at European XFEL? 
• nanoESI 

– low background & sample 
consumption 

– 10,000 patterns in 16 min 
with 1 µm focus 

– No buffer background at 
high source pressure 

 

J.Schulz et al., SPIE Proceedings 2013; Uetrecht et al. J Synchrotron Radiat 2019 
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detector plate 



Why use native MS at European XFEL? 
• nanoESI 

– Aerolens (Fasmatech) 
• Higher flux 
• Low abundant intermediates 

 

 

Unpublished & J.Schulz et al., SPIE Proceedings 2013 
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detector plate 

normal 
interface 

aerolens 

GroEL 



Why use native MS at European XFEL? 
• Quadrupole 

– Mass selection 
– Purify low abundant species 
– Digitally driven (Greifswald) 

Unpublished & J.Schulz et al., SPIE Proceedings 2013 
 23-09-2019 Dynamics of viral Structures 48 

detector plate 



Why use native MS at European XFEL? 
• Trap (Greifswald) 

– Time particle release with FEL 
– Increase ion density 
– Trapping capacity sufficient for 

100 ms 
– No indication of structural 

damage 

Unpublished & J.Schulz et al., SPIE Proceedings 2013 
 23-09-2019 Dynamics of viral Structures 49 

detector plate 



Why use native MS at European XFEL? 

• Ion mobility separation 
(Manchester/MS Vision) 
– Conformational separation 

J.Schulz et al., SPIE Proceedings 2013 
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detector plate 



Why use native MS at European XFEL? 

• (Dipole orientation) 
• ToF – online diagnostics 

– Sample quality 
– Sample influx 
– Proper selection 

 
• Current status 

– Testing all components 
experiments at FLASH I/II, 

 PETRA III 
Assemble prototype 
Proof-of-principle on norovirus 

capsids in 2020 

J.Schulz et al., SPIE Proceedings 2013 
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detector plate 
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What about small complexes? 

Krichel et al, in preparation 
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Coronaviruses 
– Mild cold to severe zoonoses 

(SARS, MERS) 
Polyprotein 

P 
P P P 

16 non-structural proteins 

Replication machinery 

Protease 
processing 



Why native top down MS? 
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P 
P 

P P 

Identification, modifications 

P 

P 

P 
P 

P P 

UVPD, CID, ETD, SID 

P 

P 
P P 

P 

P 

P P 

Bottom up 



X-rays for top-down? 
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FLASH 

EuXFEL 



Soft X-rays for protein fragmentation? 

• Soft X-rays - no structural resolution 
• Instantaneous multiphoton absorption 
Structural information? 
Native top-down MS? 
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FLASH laser 



Our QToF @ PETRA III P04 
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Our setup 
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Backbone fragmentation in myoglobin 
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Fragmentation/dissociation of sfGFP 
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Dissociation of hemoglobin 
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Possible mechanisms 

• Auger emission & cascade 
• More efficient in large 

systems 
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• Auger emission & 
intermolecular Coulomb 
decay 



Summary 
• Viruses 

– Isolate specific 
dynamics/assembly 

– Single deamidation abrogates 
glycan binding 

– Polyprotein processing and 
complexation 

– Peptide binding to MHC 
 

• X-rays beyond crystallography 
– Go well with gas phase ions! 
– Intermediates at high resolution? 
– New fragmentation technique? 
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