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How do we perceive the world around us?   

Rather simple answer: through our senses, but combined with our “view” of the world. 

Galileo with the telescope:  observation of the moons of Jupiter : revolution in 
the picture of the cosmos by Aristoteles                                                 

With modern science, measuring apparatuses appear to enhance our senses and change 
our world view.
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In the quantum world, things have properties that are qualitatively different from what 
we are used to:   

Quantum physics (along with the theory of relativity) is the perfect example of how 
reality inner mechanisms escape our senses. 

-they can be in two (or more) states —like position and velocity—at the same time. 

-they can simultaneously behave as particles and waves; 
-they can travel (unscathed) through walls;

These properties are “weird” to us, because we are not used to them in our experience 
of the world.
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The study of the predictability sieve, investigations of the interface between 
chaotic dynamics and decoherence, and most recently, the tantalizing glimpses of
the information-theoretic nature of the quantum have elucidated our understanding
of the Universe. During this period, Los Alamos has grown into a leading center 
for the study of decoherence and related issues through the enthusiastic participation
of a superb group of staff members, postdoctoral fellows, long-term visitors, and
students, many of whom have become long-term collaborators. This group includes,
in chronological order, Andy Albrecht, Juan Pablo Paz, Bill Wootters, Raymond
Laflamme, Salman Habib, Jim Anglin, Chris Jarzynski, Kosuke Shizume,
Ben Schumacher, Manny Knill, Jacek Dziarmaga, Diego Dalvit, Zbig Karkuszewski,
Harold Ollivier, Roberto Onofrio, Robin Blume-Kohut, David Poulin, Lorenza
Viola, and David Wallace.

Finally, I have some advice to the reader. I believe this paper
should be read twice: first, just the old text alone; then—and 
only then—on the second reading, the whole thing. I would also
recommend to the curious reader two other overviews: the draft 
of my Reviews of Modern Physics paper (Zurek 2001a) and 
Les Houches Lectures coauthored with Juan Pablo Paz 
(Paz and Zurek 2001).

W. Zurek, Phys. Today. 44 10, (1991)
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-Large scale, compared to atomic, subatomic or Planck scale

-Border between quantum and classical:

-theoretical interest: how does classical physics emerge from 
                             the quantum world;

-applied interest: q. enhanced measurements:
-Shot noise & SQL vs Heisenberg limit
-Ligo injection of squeezed light
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Two examples:

-superconducting circuits

-optomechanical systems

-  circuit quantizationLC
-charge qubit (Cooper-pair box)

-general idea (cooling, amplification, ad libitum)



EXAMPLE 1: SUPERCONDUCTING QUBITS

Google
IBM

Superconducting circuits ,most promising candidates for quantum computation 
architectures
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Quantum (collective) effects on a “macroscopic” scale!

How is this possible?

2. (bulk) plasma mode oscillations are (at microwave frequencies) 
   frozen in the ground state

1. superconductivity gaps the single particle excitations

3. “boundary” conditions of the circuit we are considering impose a low-energy
   cutoff dictated by the size of the system components

lumped-elements ( ) descriptionL, C

EXAMPLE 1: SUPERCONDUCTING CIRCUITS
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Superconductivity gaps the single-particle excitations

for Al

Superconductor (resistance  )R = 0

EXAMPLE 1: SUPERCONDUCTING CIRCUITS

At cryogenic temperatures, the single-particle
states occupation can be neglected
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(Bulk) plasma mode oscillations are (at microwave frequencies) frozen in the ground state

EXAMPLE 1: SUPERCONDUCTING CIRCUITS

Plasma frequency:                    ( )1015 Hz

London penetration depth:                     ( )14 nm

electromagnetic field is screened
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Collective (quantum) degree of freedom for a macroscopic ( ) number 
of electrons

n ∼ 1023

What is the message here?

We can treat these excitations in terms of the “usual” circuit theory

EXAMPLE 1: SUPERCONDUCTING CIRCUITS

quantum mechanics for circuits circuit quantum electrodynamics
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EXAMPLE 1: SUPERCONDUCTING CIRCUITS

Hamiltonian for the   circuitLC
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For large detuning, g /!"1, expansion of Eq. (4) yields
the dispersive spectrum shown in Fig. 1(c). In this situation,
the eigenstates of the one excitation manifold take the form
[15]

!− ,0" # − $g/!%!↓ ,0" + !↑ ,1" , $7%

!+ ,0" # !↓ ,0" + $g/!%!↑ ,1" . $8%

The corresponding decay rates are then simply given by

#− ,0 & $g/!%2$ + % , $9%

#+ ,0 & $ + $g/!%2% . $10%

More insight into the dispersive regime is gained by mak-
ing the unitary transformation

U = exp' g
!

$a&+ − a†&−%( $11%

and expanding to second order in g (neglecting damping for
the moment) to obtain

UHU† ) ''(r +
g2

!
&z(a†a + '

2') +
g2

!
(&z. $12%

As is clear from this expression, the atom transition is ac
Stark/Lamb shifted by $g2 /!%$n+1/2%. Alternatively, one
can interpret the ac Stark shift as a dispersive shift of the
cavity transition by &zg2 /!. In other words, the atom pulls
the cavity frequency by ±g2 /%!.

III. CIRCUIT IMPLEMENTATION OF CAVITY QED

We now consider the proposed realization of cavity QED
using the superconducing circuits shown in Fig. 2. A 1D
transmission line resonator consisting of a full-wave section
of superconducting coplanar waveguide plays the role of the
cavity and a superconducting qubit plays the role of the
atom. A number of superconducting quantum circuits could
function as artificial atom, but for definiteness we focus here
on the Cooper-pair box [6,16–18].

A. Cavity: Coplanar stripline resonator

An important advantage of this approach is that the zero-
point energy is distributed over a very small effective volume
()10−5 cubic wavelengths) for our choice of a quasi-one-
dimensional transmission line “cavity.” As shown in Appen-
dix A, this leads to significant rms voltages Vrms

0 #*'(r /cL
between the center conductor and the adjacent ground plane
at the antinodal positions, where L is the resonator length and
c is the capacitance per unit length of the transmission line.
At a resonant frequency of 10 GHz $h* /kB#0.5 K% and for
a 10 +m gap between the center conductor and the adjacent
ground plane, Vrms#2 +V corresponding to electric fields
Erms#0.2 V/m, some 100 times larger than achieved in the
3D cavity described in Ref. [3]. Thus, this geometry might
also be useful for coupling to Rydberg atoms [19].

In addition to the small effective volume and the fact that
the on-chip realization of CQED shown in Fig. 2 can be
fabricated with existing lithographic techniques, a
transmission-line resonator geometry offers other practical
advantages over lumped LC circuits or current-biased large
Josephson junctions. The qubit can be placed within the cav-
ity formed by the transmission line to strongly suppress the
spontaneous emission, in contrast to a lumped LC circuit,
where without additional special filtering, radiation and para-
sitic resonances may be induced in the wiring [20]. Since the
resonant frequency of the transmission line is determined
primarily by a fixed geometry, its reproducibility and immu-
nity to 1/ f noise should be superior to Josephson junction
plasma oscillators. Finally, transmission-line resonances in
coplanar waveguides with Q#106 have already been dem-
onstrated [21,22], suggesting that the internal losses can be
very low. The optimal choice of the resonator Q in this ap-
proach is strongly dependent on the intrinsic decay rates of
superconducting qubits which, as described below, are pres-
ently unknown, but can be determined with the setup pro-
posed here. Here we assume the conservative case of an
overcoupled resonator with a Q#104, which is preferable for
the first experiments.

B. Artificial atom: The Cooper-pair box

Our choice of “atom,” the Cooper-pair box [6,16], is a
mesoscopic superconducting island. As shown in Fig. 3, the

FIG. 2. (Color online). Schematic layout and equivalent lumped
circuit representation of proposed implementation of cavity QED
using superconducting circuits. The 1D transmission line resonator
consists of a full-wave section of superconducting coplanar wave-
guide, which may be lithographically fabricated using conventional
optical lithography. A Cooper-pair box qubit is placed between the
superconducting lines and is capacitively coupled to the center trace
at a maximum of the voltage standing wave, yielding a strong elec-
tric dipole interaction between the qubit and a single photon in the
cavity. The box consists of two small $#100 nm, 100 nm% Joseph-
son junctions, configured in a #1 +m loop to permit tuning of the
effective Josephson energy by an external flux -ext. Input and out-
put signals are coupled to the resonator, via the capacitive gaps in
the center line, from 50) transmission lines which allow measure-
ments of the amplitude and phase of the cavity transmission, and
the introduction of dc and rf pulses to manipulate the qubit states.
Multiple qubits (not shown) can be similarly placed at different
antinodes of the standing wave to generate entanglement and two-
bit quantum gates across distances of several millimeters.

CAVITY QUANTUM ELECTRODYNAMICS FOR… PHYSICAL REVIEW A 69, 062320 (2004)

062320-3

*from Blais et al. PRA 69, 062320 (2004)

How does the look like “experimentally”



EXAMPLE 1: SUPERCONDUCTING CIRCUITS

As for the h.o. Hamiltonian, we can write the   circuit HamiltonianLC



EXAMPLE 1: SUPERCONDUCTING CIRCUITS

As for the h.o. Hamiltonian, we can write the   circuit HamiltonianLC



EXAMPLE 1: SUPERCONDUCTING CIRCUITS

As for the h.o. Hamiltonian, we can write the   circuit HamiltonianLC

Spectrum:
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Spacing between energy levels is constant. Not suitable for a qubit: we want to be 
able to address selectively the transition between 2 levels.

We need something different (for a qubit)
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Tunneling of Cooper pairs

Two superconductors  + tunneling junction
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From the expression of   we can calculate the
current operator

ĤT

First Josephson relation
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Josephson junction
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Let’s add another ingredient…
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   can be diagonalized 
(in the “phase representation”)
H = ĤT + ĤC

Nonlinear spectrum
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Cooper-pair box Charge qubit
Transmon qubit ( )EJ ≫ Ec

Xmon qubit
e.g. Google Bristlecore architecture
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Why is the idea so powerful?

Let’s put many of them 
together

Quantum algorithm operates on  qubit⟩ in parallel on   classical bits2n
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Wrapping up:

-we can engineer the properties of a nearly-macroscopic 
 metal lump to behave quantum mechanically

-Low temperatures: needed for sc (but not only…)

-Metallic properties (screening plasma oscillations)
-Superconductivity (gapping single-particle excitations)

-Exploiting

-Artificial atom with tunable properties
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Halley comet (1986)

Sun Comet + tailFirst suggestion



RADIATION PRESSURE II

J. C. Maxwell
Theoretical description

Maxwell equations:

Radiation exerts a force on a material object

radiation pressure force



RADIATION PRESSURE III

A. Einstein Particle nature of light: photon

Transfer of momentum from the 
photon to the material object

Radiation pressure force



APPLICATIONS

Optical tweezers:

Jarzynski Nat Phys.7, 591 (2011)

Manipulation of a DNA string 
by moving two PS nanobeads 
with two optical tweezers. 



APPLICATIONS

Atom trapping & cooling:

Cooling and trapping neutral atoms in an 
optical lattice. 
Obser vation of a QPT between a 
superfluid (a) and a Mott insulator (b).

Greiner et al. Nature 415, 39 (2002)
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Environment: non-interacting modes

System: 

System-environment coupling (e.g.):  
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D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 2007).

Solve the EOM for

defining                                             and assuming

and plug in the EOM for  
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OPTICAL CAVITY

Hamiltonian

solved by FT

in terms of the frequency

Condition for resonance



OPTICAL CAVITY + MECHANICAL RESONATOR

Laser

L

xx

b. The cavity deformation leads to a 
shift in the resonant frequency 

What if one of the mirrors is allowed to 
move, e.g. as if connected to a spring?

a. If     is the radiation-pressure force, 
then 
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acoustic Bragg reflection, couples via radiation pressure to
both optical resonances.

An illustration of the experimental apparatus used to cool
and measure the OMC nanomechanical oscillator is shown
in Fig. 2. In order to precool the oscillator, the silicon sample
is mounted inside a Helium flow cryostat. For a sample
mount temperature of 6.3K, the thermal bath temperature of
the mechanical mode is measured to be 18 K (thermal
phonon occupation of nb ¼ 94 phonons) through optical
measurements described below. At this temperature the
breathing mode damping rate to the thermal bath is found
to be!i=2" ¼ 43 kHz. The optical resonances of the OMC
cavity aremeasured to have total damping rates of#c=2" ¼
390 MHz and #r=2" ¼ 1:0 GHz for the cooling and read-
out modes, respectively. An optical fiber taper is used to
evanescently couple light to and from the OMC cavity.
Utilizing piezoelectric stages, the taper is positioned to
the side of the nanobeam cavity and placed in contact
with the surface of the silicon microchip surrounding the
suspended nanobeam. In this scheme, the fiber taper runs
approximately parallel to the nanobeam, and can be rigidly
mounted at a prescribed nanoscale gap from the nanobeam.
For the taper-to-nanobeam gap used here (& 200 nm), the
coupling rate to the fiber taper waveguide is approximately
#e;c=2" ¼ 46 MHz for the cooling mode and #e;r=2" ¼
300 MHz for the readout mode.

A Hamiltonian describing the coupled OMC cavity sys-
tem is given by ^H ¼ @ð!r þ grx̂=xzpfÞâyâ þ @ð!c þ
gcx̂=xzpfÞĉyĉ þ @!m b̂

yb̂, where ĉ (ĉy) and â (ây) are the
annihilation (creation) operators for photons in the cooling
and readout modes, respectively, and x̂ % xzpfðb̂y þ b̂Þ is
the displacement operator of the breathing mode with b̂y

(b̂) the phonon creation (annihilation) operator. xzpf , the

mode’s zero-point fluctuation amplitude, is estimated to be
2.7 fm from FEM simulations. The zero-point optome-
chanical coupling rates are determined from measurements
of the optically-induced damping of the mechanical mode
[13] to be gc=2" ¼ 960 kHz and gr=2" ¼ 430 kHz for
the cooling and readout modes, respectively.
As alluded to above, resolved sideband cooling in opto-

mechanical cavities follows physics which is formally
similar to the Raman processes used to cool ions to their
motional ground state [1]. A cooling laser, with frequency
!l ¼ !c & !m , is tuned a mechanical frequency below
that of the cooling cavity resonance of the OMC, giving
rise to an intracavity photon population nc. Motion of the
mechanical oscillator causes scattering of the intracavity
cooling beam laser light into Stokes and anti-Stokes side-
bands at !c & 2!m and !c, respectively. Since the anti-
Stokes sideband is resonant with the cavity at !c, and
#c < !m , the anti-Stokes optical up-conversion
process is greatly enhanced relative to the Stokes
down-conversion process, leading to cooling of the me-
chanical mode. Assuming a deeply resolved sideband
system (#c=!m ' 1), the backaction cooled mechanical
mode occupancy is approximately given by hnic ¼
!inb=ð!i þ !cÞ [16,17].
Optical scattering of the intracavity light field can also

be used to read out the motion of the coupled mechanical

FIG. 2 (color online). Schematic of the experimental set-up.
Two narrowband lasers (linewidth (300 kHz) are used to inde-
pendently cool and readout the motion of the breathing mechani-
cal mode of the OMC cavity. The 1500 nm (readout) and
1400 nm (cooling) laser beams are passed through variable
optical attenuators (VOAs) to set the laser power, and combined
at a wavelength multiplexer ($-MUX) before being sent into the
cryostat through an optical fiber. Transmission of the 1500 nm
readout beam through the OMC cavity, collected at the output
end of the optical fiber, is filtered from the 1400 nm cooling
beam light via a bandpass filter, preamplified by an Erbium-
doped fiber amplifier (EDFA), and detected on a high-speed
photodetector (PD2) connected to a real-time spectrum analyzer
(RSA). An optical wave meter ($-meter) is used to monitor both
the cooling and readout laser frequencies. The optical reflection
from the cavity is used to perform EIT-like spectroscopy [22] on
both the readout and cooling cavity modes. Other components
are: amplitude-modulation (a-m) and phase-modulation (% -m)
electro-optic modulators, fiber polarization controller (FPC),
swept frequency radio-frequency signal generator (rf-sg), lock-
in amplifier (lock-in), and optical switches (SW).

FIG. 1 (color online). (a) A scanning electron micrograph of
the silicon nanobeam optomechanical cavity. Finite-element
method (FEM) numerical simulations of the electric field am-
plitude of the (b) first- and (c) second-order optical modes of the
cavity which are used for cooling and probing the mechanical
motion, respectively. (d) FEM numerical simulation showing the
displacement amplitude of the coupled breathing mechanical
mode.
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appropriately described as an optomechanical polariton whose deco-
herence time exceeds the period of the Rabi oscillations between light
and mechanics. Although the ground state has recently been reported
with optical cooling10, in that work Vc was much smaller than k. In
contrast, the present system achieves a coupling rate exceeding both
the optical and mechanical decoherence rates, thereby satisfying the
necessary conditions for full control of the quantum state of a mech-
anical oscillator with optical fields9,12–14,21,22. The experimental setting
is a micro-optomechanical system in the form of a spoke-anchored
toroidal optical microcavity24. Such devices exhibit whispering gallery
mode resonances of high quality factor (with a typical cavity decay rate
k/2p, 10 MHz) coupled to mechanical radial breathing modes via
radiation pressure25. The vacuum optomechanical coupling rate
g0 5 (vc/R)xZPM can be increased by reducing the radius R of the
cavity (here vc is the optical cavity resonance frequency and xZPM is
the zero point motion). However, the larger per photon force Bvc/R is
then usually partially compensated by the increase in the mechanical
resonance frequency Vm—and correspondingly smaller zero point
motion, given by xZPM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B= 2meff Vmð Þ

p
(where meff is the effective

oscillator mass). Moreover, small structures also generally feature lar-
ger dissipation through clamping losses. To compensate these oppos-
ing effects, we use an optimized spoke-anchor design (see Fig. 1 and
Supplementary Information) that maintains low clamping losses and a
moderate mechanical resonance frequency while reducing the dimen-
sions of the structure. Devices fabricated in this manner (with
R 5 15mm) exhibited coupling rates as high as g0 5 2p3 3.4 kHz for
a resonance frequency of 78 MHz and a critically coupled sideband
factor Vm/k 5 11.

To reduce the mechanical decoherence rate c<Cm!nm, the micro-
cavity is embedded in a 3He cryostat (minimum temperature
Tmin 5 650 mK)26. A continuous-wave Ti:sapphire laser beam, whose
phase and amplitude quadrature noises are quantum-limited for the
Fourier frequencies of interest, is coupled to the microcavity using a
tapered optical fibre. The weak mechanical displacement fluctuations
are recorded by measuring the phase fluctuations imprinted on the
field emerging from the cryostat using balanced homodyne detec-
tion. Whereas the coherent coupling rate Vc can be determined un-
ambiguously by probing the coherent response of the system27, the
mechanical decoherence rate is affected in a non-trivial way by the
light-absorption-dependent sample temperature and the mechanical
mode’s coupling to its environment, which is dominated by two-level
fluctuators at cryogenic temperatures23,26. In order to systematically
assess the aforementioned effects on the decoherence rate, the coupling
laser’s frequency vl 5 vc 1 D (where D denotes the laser detuning) is
varied in the vicinity of the lower mechanical sideband, while keeping

the launched power constant. This allows the displaced cavity mode â
(of frequency jDj) to be brought in and out of resonance with the
mechanical mode b̂ (of frequency Vm). For each detuning point, we
acquire the coherent response of the system to an optical excitation of
swept frequency vl 1 Vmod in a first step (Vmod is the frequency dif-
ference from the coupling laser). These spectra (Fig. 2a) allow us to
determine all parameters of the model characterizing the optomecha-
nical interaction (Supplementary Information). For large detunings
jDj. Vm, they essentially feature a Lorentzian response of width k
and centre frequency jDj. The sharp dip at Vmod < Vm originates from
optomechanically induced transparency27 (OMIT), and for Vm 5 –D,
its width is approximately V2

c

"
k. The coupling rate, as derived from a

fit of the coherent response for a laser power of 0.56 mW, is
Vc 5 2p3 (3.7 6 0.05) MHz (corresponding to an intracavity photon
number of !nc~3|105).

Additionally, for each value of the detuning, the noise spectrum of
the homodyne signal is recorded in the absence of any external excita-
tion (Fig. 2b). The observed peak represents the phase fluctuations
imprinted on the transmitted light by the mechanical mode’s thermal
motion. The constant noise background on these spectra is the shot-
noise level for the (constant) laser power used throughout the laser
sweep (see Supplementary Information for details). Importantly, the
amplitude of the peak is determined by the coupling to and the tem-
perature of the environment, and therefore allows us to extract the
mechanical decoherence rate. All parameters now having been measured,
it is moreover possible to retrieve the mechanical displacement spec-
trum (Fig. 2c inset). As can be seen, for detunings close to the sideband,
when the (displaced) optical and mechanical modes are degenerate, the
fluctuations are strongly reduced. This effect of optomechanical
resolved sideband cooling28 can be understood in a simple picture: in
the regime Vc=k, the optical decay is faster than the swapping
between the vacuum in the displaced optical field and the thermal state
in the mechanical oscillator. In this case, the mechanical oscillator is
coupled to an effective optical bath at near-zero thermal occupancy
!nmin with the rate Ccool~V2

c

"
k. Ideally, !nmin~k2"16V2

m=1 is
governed by non-resonant Stokes terms â{b̂{zâb̂ neglected in the
Hamiltonian (equation (1))18,19.

Evaluating the mechanical decoherence rate for D 5 –Vm at a cryostat
set point of 0.65 K, we find c 5 2p3 (2.2 6 0.2) MHz—significantly
smaller than Vc. Simultaneously, the average occupancy of the mech-
anical mode is reduced to !n~1:7+0:1 (corresponding to 37 6 4%
ground state occupation), which is limited by the onset of normal mode
splitting. Indeed, as Vc approaches k, the thermal fluctuations are only
partially dissipated into the optical bath, and are partially written back
onto the mechanics after one Rabi cycle.
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Figure 1 | Optomechanical microresonators. a, False-colour scanning
electron micrograph of a spoke-anchored toroidal resonator 31mm in diameter
used for the optomechanical experiments reported in this work. b, Sketch of an
optical whispering gallery mode in the microresonator (colours indicate optical
phase). c, Simulated displacement (exaggerated for clarity) of the fundamental
radial breathing mode of the structure. d, Equivalent optomechanical Fabry–

Pérot cavity: quantum-coherent coupling is achieved when the enhanced
coupling rate Vc is comparable to or exceeds the optical and mechanical
decoherence rates k,Cm!nmð Þ. Owing to the large asymmetry between
mechanical and optical frequencies, the occupancies of the two environments
are widely different.
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designing the cavity we decided to fabricate the device on a fused silica
substrate. This material has a low dielectric constant (er<4) relative to,
for instance, silicon (er<12), which is frequently used. This low value
contributes to minimizing the stray capacitance and allows us to obtain
the lowest value so far, C < 18 fF, for the effective parallel capacitance of
the nearly millimetre-sized cavity. These measures, and the remaining
parameters (L 5 21 nH, CS1 5 6 fF, CS2 5 12 fF and Cg 5 0.6 fF; Fig. 1a),
create a strong electromechanical coupling of g/2p5 1.8 MHz nm21

(equivalently, g/2p multiplied by the zero-point amplitude, x0, equals
40 Hz per phonon). An interdigital coupling capacitor, Cc < 6 fF, results
in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
width is cc~cEzcI<2p|6:2 MHz, where cI/2p5 1.4 MHz is the
damping rate due to internal losses.

The theoretical framework suitable to describe the amplification is
closely related to the methodology used to describe the sideband cool-
ing in optomechanical systems17,18,20–22. We describe the system in
terms of quantum Langevin equations with the aim of analysing the
effect of the pumping on the signal, and especially to detail the effects
of different types of fluctuation coupling to the system. The latter
comprise the quantum and thermal fluctuations related to the input
signal, the cavity and the mechanical resonator. In general, the para-
metric coupling between the cavity and the mechanical resonator gives
rise to the possibility of squeezed states23,24 and, hence, to back-action-
evading measurements.

Our detailed theoretical analysis (Supplementary Information)
gives the explicit value of the gain in each preferred quadrature, Gx

and Gy, and the average gain, Gav~(GxzGy)=2. The expressions for
the gains are well approximated by

Gx,y~4 CM vð Þj j2
cE

cc

! "2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

cc

4D

r
+

cc

D

! "2

ð1Þ

where the upper sign gives the expression for Gx and the lower sign
gives the expression for Gy. The main contribution to the amplifica-
tion is described by the ratio between the mechanical response
functions in the presence and the absence of the pump,
CM vð Þ~ v2

m{v2{icmv
$ %

= v2
eff {v2{iceff v

$ %
, where veff <vm.

The key role in the microwave amplification is that of the effective
mechanical damping, ceff 5 cm 2 dceff(v, nc) (Fig. 2c and Supplemen-
tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
mechanical damping. This reduction causes the amplification of the
signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm

&
4g2x2

0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
negligible and the amplifier hence behaves as a typical phase-insensitive
amplifier characterized by the average gain, Gav. However, it is
noteworthy that by varying the parameters towards the ‘bad-cavity’ limit
(cc/D . 1), it is possible to achieve strong squeezing and, consequently,
noise-free amplification in one quadrature. This situation is opposite to
the findings in studies on two-tone back-action-evading measurements,
where the strongest squeezing is found in the good-cavity limit.

We use a cryostat with the temperature stabilized between 350 and
25 mK to carry out the measurements. The pump and signal tones
are combined at room temperature using a power splitter. Inside the
cryostat, the incoming irradiation is attenuated by 43 6 1.5 dB. The
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Figure 2 | Amplification mechanism. a, Explanation of the various frequencies
involved. The cavity is driven by a coherent field (the pump, ap) oscillating at
vp 5 vc 1 D, where vc is the cavity resonant frequency and D<vm= vc. The
weak input signal to be amplified, ain, is applied with a frequency near the cavity
resonance, such that vin 5 vp 2 vm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy
levels in the system. The (blue-detuned) pump, ap, induces a transition between a
state characterized by nc cavity photons and nm mechanical quanta, | nc, nmæ, and a
state characterized by nc 1 1 photons and nm 1 1 mechanical quanta, | nc 1 1,
nm 1 1æ. A key part of the amplification process is the effective damping, ceff,
which in the simplified scheme presented here represents the effective lifetime for
the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.
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Figure 1 | Electromechanical microwave amplification. a, The variable
capacitor of the micromechanical resonator is in parallel with the cavity, as
shown in the lumped-element model. The input microwave field is
decomposed into a blue-detuned pump coherent field, ap (frequency, vp) and a
signal (frequency, vin) plus noise, ain 5 ain 1 dain. The output signal, aout, is the
amplified input signal. b, The device is dominated by the meandering high-
impedance cavity (false colour in red), which resonates at vc/2p5 6.982 GHz.
During operation, this cavity is connected to coaxial cables via a coupling
capacitor. The micromechanical beam resonator (frequency, vm/
2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).
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designing the cavity we decided to fabricate the device on a fused silica
substrate. This material has a low dielectric constant (er<4) relative to,
for instance, silicon (er<12), which is frequently used. This low value
contributes to minimizing the stray capacitance and allows us to obtain
the lowest value so far, C < 18 fF, for the effective parallel capacitance of
the nearly millimetre-sized cavity. These measures, and the remaining
parameters (L 5 21 nH, CS1 5 6 fF, CS2 5 12 fF and Cg 5 0.6 fF; Fig. 1a),
create a strong electromechanical coupling of g/2p5 1.8 MHz nm21

(equivalently, g/2p multiplied by the zero-point amplitude, x0, equals
40 Hz per phonon). An interdigital coupling capacitor, Cc < 6 fF, results
in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
width is cc~cEzcI<2p|6:2 MHz, where cI/2p5 1.4 MHz is the
damping rate due to internal losses.

The theoretical framework suitable to describe the amplification is
closely related to the methodology used to describe the sideband cool-
ing in optomechanical systems17,18,20–22. We describe the system in
terms of quantum Langevin equations with the aim of analysing the
effect of the pumping on the signal, and especially to detail the effects
of different types of fluctuation coupling to the system. The latter
comprise the quantum and thermal fluctuations related to the input
signal, the cavity and the mechanical resonator. In general, the para-
metric coupling between the cavity and the mechanical resonator gives
rise to the possibility of squeezed states23,24 and, hence, to back-action-
evading measurements.

Our detailed theoretical analysis (Supplementary Information)
gives the explicit value of the gain in each preferred quadrature, Gx

and Gy, and the average gain, Gav~(GxzGy)=2. The expressions for
the gains are well approximated by
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where the upper sign gives the expression for Gx and the lower sign
gives the expression for Gy. The main contribution to the amplifica-
tion is described by the ratio between the mechanical response
functions in the presence and the absence of the pump,
CM vð Þ~ v2

m{v2{icmv
$ %

= v2
eff {v2{iceff v

$ %
, where veff <vm.

The key role in the microwave amplification is that of the effective
mechanical damping, ceff 5 cm 2 dceff(v, nc) (Fig. 2c and Supplemen-
tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
mechanical damping. This reduction causes the amplification of the
signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm
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0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
negligible and the amplifier hence behaves as a typical phase-insensitive
amplifier characterized by the average gain, Gav. However, it is
noteworthy that by varying the parameters towards the ‘bad-cavity’ limit
(cc/D . 1), it is possible to achieve strong squeezing and, consequently,
noise-free amplification in one quadrature. This situation is opposite to
the findings in studies on two-tone back-action-evading measurements,
where the strongest squeezing is found in the good-cavity limit.

We use a cryostat with the temperature stabilized between 350 and
25 mK to carry out the measurements. The pump and signal tones
are combined at room temperature using a power splitter. Inside the
cryostat, the incoming irradiation is attenuated by 43 6 1.5 dB. The
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vp 5 vc 1 D, where vc is the cavity resonant frequency and D<vm= vc. The
weak input signal to be amplified, ain, is applied with a frequency near the cavity
resonance, such that vin 5 vp 2 vm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy
levels in the system. The (blue-detuned) pump, ap, induces a transition between a
state characterized by nc cavity photons and nm mechanical quanta, | nc, nmæ, and a
state characterized by nc 1 1 photons and nm 1 1 mechanical quanta, | nc 1 1,
nm 1 1æ. A key part of the amplification process is the effective damping, ceff,
which in the simplified scheme presented here represents the effective lifetime for
the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.
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Figure 1 | Electromechanical microwave amplification. a, The variable
capacitor of the micromechanical resonator is in parallel with the cavity, as
shown in the lumped-element model. The input microwave field is
decomposed into a blue-detuned pump coherent field, ap (frequency, vp) and a
signal (frequency, vin) plus noise, ain 5 ain 1 dain. The output signal, aout, is the
amplified input signal. b, The device is dominated by the meandering high-
impedance cavity (false colour in red), which resonates at vc/2p5 6.982 GHz.
During operation, this cavity is connected to coaxial cables via a coupling
capacitor. The micromechanical beam resonator (frequency, vm/
2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).
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One of the present goals in physics is the explanation of
macroscopic phenomena as emerging from the quantum-
mechanical laws governing nature on a microscopic scale.

This understanding is also important for future quantum
information applications1–4, as many of the most promising
platforms are based on nearly macroscopic degrees of freedom.
For macroscopic mechanical objects, their potential quantum
behaviour5 has been actively investigated with resonators
interacting with an electromagnetic cavity mode6. In particular,
freezing of the mechanical Brownian motion7,8 down to below
one quantum of energy has recently been observed9,10.

Another result of radiation–pressure interaction is the mixing
of the normal modes of vibration into linear combinations of the
uncoupled phonon and photon modes. This has been verified
with optomechanical Fabry–Perot cavity11,12, and by its on-chip
microwave analogue13 using an aluminium membrane. All this
work is paving the way towards engineering non-classical
motional5 and hybrid quantum states1,3,4,14 for basic tests of
quantum theory15,16, as well as applications in foreseeable
future.

Corresponding phenomena in systems comprising more than
two active degrees of freedom17–19 have received less attention.
In the optomechanical crystal set-up, coupling of mechanical
vibrations via radiation–pressure interaction has been demon-
strated with the zipper cavity20, however, with some direct
interaction between the beams. In the microwave regime, such
measurements have remained outstanding. In this work, we take
a step further, and examine a multimode system where
two micromechanical beams, having resonant frequencies
o1/(2p)¼ 32.1 MHz and o2/(2p)¼ 32.5 MHz, are each
coupled to a microwave on-chip cavity. We obtain the first
evidence of hybridization of all the three degrees of freedom.
This was made possible by operating, as opposed to the optical
set-up, in the good-cavity limit, that is, both o1 and o2 were
much larger than the cavity decay rate gc. Simultaneously, the
mechanical modes are found at low occupation numbers nm,
near the quantum ground state, down to nm¼ 1.8±0.5. These
are the lowest occupations recorded with nanowire resonators to
date, and they occur via the sideband cooling, starting from
operation at dilution refrigerator temperatures at a few tens of
millikelvin.

Results
Cavity with several mechanical modes. In the optical domain20,
a three-mode optomechanical system can be pictured as a Fabry–
Perot cavity with both massive mirrors mounted via springs, see
Fig. 1a. In the microwave version, (Fig. 1b), the mirrors are
replaced by movable capacitors formed by the mechanical reso-
nators. The electromechanical coupling arises when each
mechanical resonator (labelled with j), expressed as time-varying
capacitors Cj, independently modulates the total capacitance, and
hence, the cavity frequency oc. This is described by the coupling
energies gj¼ (oc/2C)@Cj/@xj. In the actual device (see the
micrograph in Fig. 1c), the mechanical resonators are spatially
separated by about 100mm, and we hence expect the direct
interaction between the beams via the substrate material to be
negligible. We drive the cavity strongly by a microwave pump
signal applied at the frequency oP near the cavity frequency. The
pump induces a large cavity field with the number of pump
photons nP " 1. This allows for a linearized description of the
electromechanical interaction and results in substantially
enhanced effective couplings Gj¼ gjx0j

ffiffiffiffiffi
nP
p

, where
x0j¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!h/2mjoj

p
is the zero-point amplitude.

The general Hamiltonian for N mechanical resonators with
frequencies oj, individually coupled to a common cavity mode,

written in a frame rotating with the pump, becomes

H¼ #!hDawaþ!h
XN

j¼ 1

ojb
w
j bj#!h awþa

" #XN

j¼ 1

Gj bwj þbj

$ %
ð1Þ

Here, a is the annihilation operator for the cavity mode, while bj
are those of the mechanical resonators. If one assumes roughly
similar mechanical resonators, viz. oj ' om and Gj ' G, the
cavity becomes nearly resonant to all of them at the red-sideband
detuned pump condition D¼ #om.

Coupling of the mechanical resonators via the cavity ‘bus’ can
be anticipated to be significant if the mechanical spectra begin to
overlap when their width increased by the radiation pressure,
geff¼ gmþgopt, grows comparable to the mechanical frequency
spacing. Here, gopt¼ 4G2/gc. The equations of motion following
from equation (1) allow one to verify the above assumption. We
will in the following focus on two resonators, N¼ 2. The result of
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Figure 1 | Cavity-controlled coupling of micromechanical resonators.
(a) Optomechanical system with both mirrors movable has three degrees
of freedom. These are the optical field inside the Fabry–Perot cavity and the
displacements x 1 and x 2 of the mirrors. (b) Analogue of panel a with a
microwave-regime cavity represented by the lumped element inductors and
capacitors and arbitrary number j¼ 1 y N of mechanical resonators. The
system is probed through the coupling capacitor Cc by shining a strong
pump microwave tone (frequency oP), which corresponds to the laser in a,
and possibly a weak probe tone (frequency oin and voltage amplitude Vin)
in a dilution refrigerator down to 25 mK temperature. The outgoing wave
Vout can be monitored. (c) Images of the all-aluminium superconducting
sample, showing four fabrication jigs for a beam. Total of three beams (x 1 y
x 3) were operating. Beams 1 and 2 had large electromechanical couplings
g1/2p¼ 1.8 MHz nm#1, g2/2p¼ 2.0 MHz nm#1, whereas the third beam
had an order of magnitude smaller coupling. The scale bars are 50mm on
the left and 10mm on the right.
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the zero-point motion is xzp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B= 2mVmð Þ

p
~4:1 fm. With a ratio of

Vm/k . 50, our system is deep within the resolved-sideband regime
and well-suited for sideband cooling to the mechanical ground state22,23.

To measure the mechanical displacement, we apply a microwave
field, which is detuned below the cavity resonance frequency by
D 5 2Vm, through heavily attenuated coaxial lines to the feed line
of our device. The upper sideband, now at vc, is amplified with a
custom-built Josephson parametric amplifier26,27 followed by a low-
noise cryogenic amplifier, demodulated at room temperature, and
finally monitored with a spectrum analyser. The thermal motion of
the membrane creates an easily resolvable peak in the microwave noise
spectrum. As described previously27, this measurement scheme con-
stitutes a nearly shot-noise-limited microwave interferometer with
which we can measure mechanical displacement with minimum
added noise close to fundamental limits.

In order to calibrate the demodulated signal to the membrane’s
motion, we measure the thermal noise spectrum while varying the cryo-
stat temperature (Fig. 1c). Here a weak microwave drive (,3 photons in
the cavity) is used in order to ensure that radiation pressure damping
and cooling effects are negligible. When Vm?k?Cm and D 5 2Vm,
the displacement spectral density Sx is related to the observed microwave
noise spectral density S by Sx 5 2(kVm/Gkex)2S/Po, where kex is the

coupling rate between the cavity and the feed line, and Po is the power
of the microwave drive at the output of the cavity. According to equi-
partition, the area under the resonance curve of displacement spectral
density Sx must be proportional to the effective temperature of the
mechanical mode. This calibration procedure allows us to convert the
sideband in the microwave power spectral density to a displacement
spectral density and to extract the thermal occupation of the mech-
anical mode. In Fig. 1c we show the number of thermal quanta in the
mechanical resonator as a function of T. The linear dependence of the
integrated power spectral density with temperature shows that the
mechanical mode equilibrates with the cryostat even for the lowest
achievable temperature of 15 mK. This temperature corresponds to a
thermal occupancy nm 5 30, where nm 5 [exp(BVm/kBT) 2 1]21. The
calibration determines the electromechanical coupling strength,
G/2p5 49 6 2 MHz nm21. With these device parameters, we can
investigate both the fundamental sensitivity of our measurement
and the effects of radiation pressure cooling.

The total measured displacement noise results from two sources: the
membrane’s actual mean-square motion, Sth

x , and its apparent motion,
Simp

x , which is due to imprecision of the measurement. Figure 2a demon-
strates how the use of low-noise parametric amplification significantly
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Figure 1 | Schematic description of the experiment. a, False-colour scanning
electron micrograph showing the aluminium (grey) electromechanical circuit
fabricated on a sapphire (blue) substrate; a 15-mm-diameter membrane is
suspended 50 nm above a lower electrode. The membrane’s motion modulates
the capacitance, and hence, the resonance frequency of the superconducting
microwave circuit. b, A coherent microwave drive (left, vd, shown green in
frequency–amplitude plot below) inductively coupled to the circuit (top)
acquires modulation sidebands (red and blue in plot below) owing to the
thermal motion of the membrane. The upper sideband is amplified with a
nearly quantum-limited Josephson parametric amplifier (filled triangle, right)
within the cryostat. c, The microwave power in the upper sideband provides a
direct measurement of the thermal occupancy of the mechanical mode, which
may be calibrated in situby varying the temperature of the cryostat (main
panel). The mechanical mode shows thermalization with the cryostat at all
temperatures, yielding a minimum thermal occupancy of 30 mechanical quanta
without using sideband-cooling techniques. Error bars, s.d. Inset, illustration of
the concept of sideband cooling. When the circuit is excited with a detuned
microwave drive such that D 5 2Vm, the narrow line shape of the electrical
resonance ensures that the rate to scatter photons to higher energy C1 (blue
dashed arrow, blue peak) exceeds the rate to scatter to lower energy C2 (red
dashed arrow, red peak). Thus, the net scattering rate C (blue solid arrow)
provides a cooling mechanism for the membrane.
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Figure 2 | Displacement sensitivity in the presence of dynamical back-
action. a, The displacement spectral density Sx measured with (red) and
without (blue) the Josephson parametric amplifier. As the parametric amplifier
greatly reduces the total noise of the microwave measurement, the time
required to resolve the thermal motion is reduced by a factor of 1,000. b, As the
microwave drive power is increased, the absolute displacement sensitivity, Simp

x
improves, reaching a minimum of 5.5 3 10234 m2 Hz21 at the highest power.
c, The parametric coupling rate g between the microwave cavity and the
mechanical mode increases as

ffiffiffiffiffi
nd
p

. This coupling broadens the linewidth of the
mechanical mode C ’m from its intrinsic value of Cm 5 2p 3 32 Hz until it
exceeds the linewidth of the microwave cavity k. d, The relative measurement
imprecision, in units of mechanical quanta, depends on the product of Simp

x and
C ’m. Thus, once the power is large enough that dynamical back-action
overwhelms the intrinsic mechanical linewidth, nimp asymptotically
approaches a constant value (nimp 5 1.9), which is a direct measure of the
overall efficiency of the photon measurement.
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designing the cavity we decided to fabricate the device on a fused silica
substrate. This material has a low dielectric constant (er<4) relative to,
for instance, silicon (er<12), which is frequently used. This low value
contributes to minimizing the stray capacitance and allows us to obtain
the lowest value so far, C < 18 fF, for the effective parallel capacitance of
the nearly millimetre-sized cavity. These measures, and the remaining
parameters (L 5 21 nH, CS1 5 6 fF, CS2 5 12 fF and Cg 5 0.6 fF; Fig. 1a),
create a strong electromechanical coupling of g/2p5 1.8 MHz nm21

(equivalently, g/2p multiplied by the zero-point amplitude, x0, equals
40 Hz per phonon). An interdigital coupling capacitor, Cc < 6 fF, results
in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
width is cc~cEzcI<2p|6:2 MHz, where cI/2p5 1.4 MHz is the
damping rate due to internal losses.

The theoretical framework suitable to describe the amplification is
closely related to the methodology used to describe the sideband cool-
ing in optomechanical systems17,18,20–22. We describe the system in
terms of quantum Langevin equations with the aim of analysing the
effect of the pumping on the signal, and especially to detail the effects
of different types of fluctuation coupling to the system. The latter
comprise the quantum and thermal fluctuations related to the input
signal, the cavity and the mechanical resonator. In general, the para-
metric coupling between the cavity and the mechanical resonator gives
rise to the possibility of squeezed states23,24 and, hence, to back-action-
evading measurements.

Our detailed theoretical analysis (Supplementary Information)
gives the explicit value of the gain in each preferred quadrature, Gx

and Gy, and the average gain, Gav~(GxzGy)=2. The expressions for
the gains are well approximated by

Gx,y~4 CM vð Þj j2
cE

cc

! "2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

cc

4D

r
+

cc

D

! "2

ð1Þ

where the upper sign gives the expression for Gx and the lower sign
gives the expression for Gy. The main contribution to the amplifica-
tion is described by the ratio between the mechanical response
functions in the presence and the absence of the pump,
CM vð Þ~ v2

m{v2{icmv
$ %

= v2
eff {v2{iceff v

$ %
, where veff <vm.

The key role in the microwave amplification is that of the effective
mechanical damping, ceff 5 cm 2 dceff(v, nc) (Fig. 2c and Supplemen-
tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
mechanical damping. This reduction causes the amplification of the
signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm

&
4g2x2

0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
negligible and the amplifier hence behaves as a typical phase-insensitive
amplifier characterized by the average gain, Gav. However, it is
noteworthy that by varying the parameters towards the ‘bad-cavity’ limit
(cc/D . 1), it is possible to achieve strong squeezing and, consequently,
noise-free amplification in one quadrature. This situation is opposite to
the findings in studies on two-tone back-action-evading measurements,
where the strongest squeezing is found in the good-cavity limit.

We use a cryostat with the temperature stabilized between 350 and
25 mK to carry out the measurements. The pump and signal tones
are combined at room temperature using a power splitter. Inside the
cryostat, the incoming irradiation is attenuated by 43 6 1.5 dB. The
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Figure 2 | Amplification mechanism. a, Explanation of the various frequencies
involved. The cavity is driven by a coherent field (the pump, ap) oscillating at
vp 5 vc 1 D, where vc is the cavity resonant frequency and D<vm= vc. The
weak input signal to be amplified, ain, is applied with a frequency near the cavity
resonance, such that vin 5 vp 2 vm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy
levels in the system. The (blue-detuned) pump, ap, induces a transition between a
state characterized by nc cavity photons and nm mechanical quanta, | nc, nmæ, and a
state characterized by nc 1 1 photons and nm 1 1 mechanical quanta, | nc 1 1,
nm 1 1æ. A key part of the amplification process is the effective damping, ceff,
which in the simplified scheme presented here represents the effective lifetime for
the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.
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Figure 1 | Electromechanical microwave amplification. a, The variable
capacitor of the micromechanical resonator is in parallel with the cavity, as
shown in the lumped-element model. The input microwave field is
decomposed into a blue-detuned pump coherent field, ap (frequency, vp) and a
signal (frequency, vin) plus noise, ain 5 ain 1 dain. The output signal, aout, is the
amplified input signal. b, The device is dominated by the meandering high-
impedance cavity (false colour in red), which resonates at vc/2p5 6.982 GHz.
During operation, this cavity is connected to coaxial cables via a coupling
capacitor. The micromechanical beam resonator (frequency, vm/
2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).
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designing the cavity we decided to fabricate the device on a fused silica
substrate. This material has a low dielectric constant (er<4) relative to,
for instance, silicon (er<12), which is frequently used. This low value
contributes to minimizing the stray capacitance and allows us to obtain
the lowest value so far, C < 18 fF, for the effective parallel capacitance of
the nearly millimetre-sized cavity. These measures, and the remaining
parameters (L 5 21 nH, CS1 5 6 fF, CS2 5 12 fF and Cg 5 0.6 fF; Fig. 1a),
create a strong electromechanical coupling of g/2p5 1.8 MHz nm21

(equivalently, g/2p multiplied by the zero-point amplitude, x0, equals
40 Hz per phonon). An interdigital coupling capacitor, Cc < 6 fF, results
in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
width is cc~cEzcI<2p|6:2 MHz, where cI/2p5 1.4 MHz is the
damping rate due to internal losses.

The theoretical framework suitable to describe the amplification is
closely related to the methodology used to describe the sideband cool-
ing in optomechanical systems17,18,20–22. We describe the system in
terms of quantum Langevin equations with the aim of analysing the
effect of the pumping on the signal, and especially to detail the effects
of different types of fluctuation coupling to the system. The latter
comprise the quantum and thermal fluctuations related to the input
signal, the cavity and the mechanical resonator. In general, the para-
metric coupling between the cavity and the mechanical resonator gives
rise to the possibility of squeezed states23,24 and, hence, to back-action-
evading measurements.

Our detailed theoretical analysis (Supplementary Information)
gives the explicit value of the gain in each preferred quadrature, Gx

and Gy, and the average gain, Gav~(GxzGy)=2. The expressions for
the gains are well approximated by

Gx,y~4 CM vð Þj j2
cE

cc

! "2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

cc
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cc
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where the upper sign gives the expression for Gx and the lower sign
gives the expression for Gy. The main contribution to the amplifica-
tion is described by the ratio between the mechanical response
functions in the presence and the absence of the pump,
CM vð Þ~ v2

m{v2{icmv
$ %

= v2
eff {v2{iceff v

$ %
, where veff <vm.

The key role in the microwave amplification is that of the effective
mechanical damping, ceff 5 cm 2 dceff(v, nc) (Fig. 2c and Supplemen-
tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
mechanical damping. This reduction causes the amplification of the
signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm

&
4g2x2

0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
negligible and the amplifier hence behaves as a typical phase-insensitive
amplifier characterized by the average gain, Gav. However, it is
noteworthy that by varying the parameters towards the ‘bad-cavity’ limit
(cc/D . 1), it is possible to achieve strong squeezing and, consequently,
noise-free amplification in one quadrature. This situation is opposite to
the findings in studies on two-tone back-action-evading measurements,
where the strongest squeezing is found in the good-cavity limit.

We use a cryostat with the temperature stabilized between 350 and
25 mK to carry out the measurements. The pump and signal tones
are combined at room temperature using a power splitter. Inside the
cryostat, the incoming irradiation is attenuated by 43 6 1.5 dB. The
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Figure 2 | Amplification mechanism. a, Explanation of the various frequencies
involved. The cavity is driven by a coherent field (the pump, ap) oscillating at
vp 5 vc 1 D, where vc is the cavity resonant frequency and D<vm= vc. The
weak input signal to be amplified, ain, is applied with a frequency near the cavity
resonance, such that vin 5 vp 2 vm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy
levels in the system. The (blue-detuned) pump, ap, induces a transition between a
state characterized by nc cavity photons and nm mechanical quanta, | nc, nmæ, and a
state characterized by nc 1 1 photons and nm 1 1 mechanical quanta, | nc 1 1,
nm 1 1æ. A key part of the amplification process is the effective damping, ceff,
which in the simplified scheme presented here represents the effective lifetime for
the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.
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Figure 1 | Electromechanical microwave amplification. a, The variable
capacitor of the micromechanical resonator is in parallel with the cavity, as
shown in the lumped-element model. The input microwave field is
decomposed into a blue-detuned pump coherent field, ap (frequency, vp) and a
signal (frequency, vin) plus noise, ain 5 ain 1 dain. The output signal, aout, is the
amplified input signal. b, The device is dominated by the meandering high-
impedance cavity (false colour in red), which resonates at vc/2p5 6.982 GHz.
During operation, this cavity is connected to coaxial cables via a coupling
capacitor. The micromechanical beam resonator (frequency, vm/
2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).
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designing the cavity we decided to fabricate the device on a fused silica
substrate. This material has a low dielectric constant (er<4) relative to,
for instance, silicon (er<12), which is frequently used. This low value
contributes to minimizing the stray capacitance and allows us to obtain
the lowest value so far, C < 18 fF, for the effective parallel capacitance of
the nearly millimetre-sized cavity. These measures, and the remaining
parameters (L 5 21 nH, CS1 5 6 fF, CS2 5 12 fF and Cg 5 0.6 fF; Fig. 1a),
create a strong electromechanical coupling of g/2p5 1.8 MHz nm21

(equivalently, g/2p multiplied by the zero-point amplitude, x0, equals
40 Hz per phonon). An interdigital coupling capacitor, Cc < 6 fF, results
in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
width is cc~cEzcI<2p|6:2 MHz, where cI/2p5 1.4 MHz is the
damping rate due to internal losses.

The theoretical framework suitable to describe the amplification is
closely related to the methodology used to describe the sideband cool-
ing in optomechanical systems17,18,20–22. We describe the system in
terms of quantum Langevin equations with the aim of analysing the
effect of the pumping on the signal, and especially to detail the effects
of different types of fluctuation coupling to the system. The latter
comprise the quantum and thermal fluctuations related to the input
signal, the cavity and the mechanical resonator. In general, the para-
metric coupling between the cavity and the mechanical resonator gives
rise to the possibility of squeezed states23,24 and, hence, to back-action-
evading measurements.

Our detailed theoretical analysis (Supplementary Information)
gives the explicit value of the gain in each preferred quadrature, Gx

and Gy, and the average gain, Gav~(GxzGy)=2. The expressions for
the gains are well approximated by

Gx,y~4 CM vð Þj j2
cE
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where the upper sign gives the expression for Gx and the lower sign
gives the expression for Gy. The main contribution to the amplifica-
tion is described by the ratio between the mechanical response
functions in the presence and the absence of the pump,
CM vð Þ~ v2

m{v2{icmv
$ %

= v2
eff {v2{iceff v

$ %
, where veff <vm.

The key role in the microwave amplification is that of the effective
mechanical damping, ceff 5 cm 2 dceff(v, nc) (Fig. 2c and Supplemen-
tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
mechanical damping. This reduction causes the amplification of the
signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm

&
4g2x2

0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
negligible and the amplifier hence behaves as a typical phase-insensitive
amplifier characterized by the average gain, Gav. However, it is
noteworthy that by varying the parameters towards the ‘bad-cavity’ limit
(cc/D . 1), it is possible to achieve strong squeezing and, consequently,
noise-free amplification in one quadrature. This situation is opposite to
the findings in studies on two-tone back-action-evading measurements,
where the strongest squeezing is found in the good-cavity limit.

We use a cryostat with the temperature stabilized between 350 and
25 mK to carry out the measurements. The pump and signal tones
are combined at room temperature using a power splitter. Inside the
cryostat, the incoming irradiation is attenuated by 43 6 1.5 dB. The
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Figure 2 | Amplification mechanism. a, Explanation of the various frequencies
involved. The cavity is driven by a coherent field (the pump, ap) oscillating at
vp 5 vc 1 D, where vc is the cavity resonant frequency and D<vm= vc. The
weak input signal to be amplified, ain, is applied with a frequency near the cavity
resonance, such that vin 5 vp 2 vm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy
levels in the system. The (blue-detuned) pump, ap, induces a transition between a
state characterized by nc cavity photons and nm mechanical quanta, | nc, nmæ, and a
state characterized by nc 1 1 photons and nm 1 1 mechanical quanta, | nc 1 1,
nm 1 1æ. A key part of the amplification process is the effective damping, ceff,
which in the simplified scheme presented here represents the effective lifetime for
the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.
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Figure 1 | Electromechanical microwave amplification. a, The variable
capacitor of the micromechanical resonator is in parallel with the cavity, as
shown in the lumped-element model. The input microwave field is
decomposed into a blue-detuned pump coherent field, ap (frequency, vp) and a
signal (frequency, vin) plus noise, ain 5 ain 1 dain. The output signal, aout, is the
amplified input signal. b, The device is dominated by the meandering high-
impedance cavity (false colour in red), which resonates at vc/2p5 6.982 GHz.
During operation, this cavity is connected to coaxial cables via a coupling
capacitor. The micromechanical beam resonator (frequency, vm/
2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).
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OPTOMECHANICAL SYSTEMS

Microwave domain
x

designing the cavity we decided to fabricate the device on a fused silica
substrate. This material has a low dielectric constant (er<4) relative to,
for instance, silicon (er<12), which is frequently used. This low value
contributes to minimizing the stray capacitance and allows us to obtain
the lowest value so far, C < 18 fF, for the effective parallel capacitance of
the nearly millimetre-sized cavity. These measures, and the remaining
parameters (L 5 21 nH, CS1 5 6 fF, CS2 5 12 fF and Cg 5 0.6 fF; Fig. 1a),
create a strong electromechanical coupling of g/2p5 1.8 MHz nm21

(equivalently, g/2p multiplied by the zero-point amplitude, x0, equals
40 Hz per phonon). An interdigital coupling capacitor, Cc < 6 fF, results
in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
width is cc~cEzcI<2p|6:2 MHz, where cI/2p5 1.4 MHz is the
damping rate due to internal losses.

The theoretical framework suitable to describe the amplification is
closely related to the methodology used to describe the sideband cool-
ing in optomechanical systems17,18,20–22. We describe the system in
terms of quantum Langevin equations with the aim of analysing the
effect of the pumping on the signal, and especially to detail the effects
of different types of fluctuation coupling to the system. The latter
comprise the quantum and thermal fluctuations related to the input
signal, the cavity and the mechanical resonator. In general, the para-
metric coupling between the cavity and the mechanical resonator gives
rise to the possibility of squeezed states23,24 and, hence, to back-action-
evading measurements.

Our detailed theoretical analysis (Supplementary Information)
gives the explicit value of the gain in each preferred quadrature, Gx

and Gy, and the average gain, Gav~(GxzGy)=2. The expressions for
the gains are well approximated by

Gx,y~4 CM vð Þj j2
cE

cc

! "2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

cc

4D

r
+

cc

D

! "2

ð1Þ

where the upper sign gives the expression for Gx and the lower sign
gives the expression for Gy. The main contribution to the amplifica-
tion is described by the ratio between the mechanical response
functions in the presence and the absence of the pump,
CM vð Þ~ v2

m{v2{icmv
$ %

= v2
eff {v2{iceff v

$ %
, where veff <vm.

The key role in the microwave amplification is that of the effective
mechanical damping, ceff 5 cm 2 dceff(v, nc) (Fig. 2c and Supplemen-
tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
mechanical damping. This reduction causes the amplification of the
signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm

&
4g2x2

0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
negligible and the amplifier hence behaves as a typical phase-insensitive
amplifier characterized by the average gain, Gav. However, it is
noteworthy that by varying the parameters towards the ‘bad-cavity’ limit
(cc/D . 1), it is possible to achieve strong squeezing and, consequently,
noise-free amplification in one quadrature. This situation is opposite to
the findings in studies on two-tone back-action-evading measurements,
where the strongest squeezing is found in the good-cavity limit.

We use a cryostat with the temperature stabilized between 350 and
25 mK to carry out the measurements. The pump and signal tones
are combined at room temperature using a power splitter. Inside the
cryostat, the incoming irradiation is attenuated by 43 6 1.5 dB. The
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Figure 2 | Amplification mechanism. a, Explanation of the various frequencies
involved. The cavity is driven by a coherent field (the pump, ap) oscillating at
vp 5 vc 1 D, where vc is the cavity resonant frequency and D<vm= vc. The
weak input signal to be amplified, ain, is applied with a frequency near the cavity
resonance, such that vin 5 vp 2 vm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy
levels in the system. The (blue-detuned) pump, ap, induces a transition between a
state characterized by nc cavity photons and nm mechanical quanta, | nc, nmæ, and a
state characterized by nc 1 1 photons and nm 1 1 mechanical quanta, | nc 1 1,
nm 1 1æ. A key part of the amplification process is the effective damping, ceff,
which in the simplified scheme presented here represents the effective lifetime for
the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.
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Figure 1 | Electromechanical microwave amplification. a, The variable
capacitor of the micromechanical resonator is in parallel with the cavity, as
shown in the lumped-element model. The input microwave field is
decomposed into a blue-detuned pump coherent field, ap (frequency, vp) and a
signal (frequency, vin) plus noise, ain 5 ain 1 dain. The output signal, aout, is the
amplified input signal. b, The device is dominated by the meandering high-
impedance cavity (false colour in red), which resonates at vc/2p5 6.982 GHz.
During operation, this cavity is connected to coaxial cables via a coupling
capacitor. The micromechanical beam resonator (frequency, vm/
2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).
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Sideband cooling

Teufel et al. Nature 475, 359 (2011)

lowers Simp
x , resulting in a reduction in the white-noise background by a

factor of more than 30. This greatly increases the signal-to-noise ratio of
the membrane’s thermal motion, thereby reducing the integration time
required to resolve the thermal peak by a factor of 1,000. To investigate
the measurement sensitivity in the presence of dynamical back-action,
we regulate the cryostat temperature at 20 mK and increase the ampli-
tude of the detuned microwave drive while observing modifications in
the displacement spectral density. We quantify the strength of the drive
by the resulting number of photons n d in the microwave cavity. As
shown in Fig. 2b, the measurement imprecision Simp

x is inversely pro-
portional to n d. At the highest drive power (n d < 105), the absolute
displacement sensitivity is 5.5 3 10234 m2 Hz21.

As expected, the increased drive power also damps and cools the mech-
anicaloscillator3,22,23.ThetotalmechanicaldissipationrateC ’m~CmzC
is the sum of the intrinsic dissipation, Cm, and the radiation-pressure-
induced damping resulting from scattering photons to the upper/lower
sideband, C 5 C1 2 C2, where C 6 5 4g2k/[k2 1 4(D 6 Vm)2]. Here g
is the coupling rate between the cavity and the mechanical mode, which
depends on the amplitude of the drive: g~Gxzp

ffiffiffiffiffi
n d
p

. Figure 2c shows
the measured values of k, g and C ’m as the drive increases. The radi-
ation-pressure damping of the mechanical oscillator becomes
pronounced above a cavity drive amplitude of approximately 75
photons, at which point C ’m~2Cm and the mechanical linewidth
has doubled. Note that the increased damping rate can be switched
off at any time by removing the cooling drive, returning the mechanical
oscillator to its intrinsic quality factor, Qm.

Whereas the absolute value of the displacement imprecision
decreases with increasing power, the visibility of the thermal mech-
anical peak no longer improves once the radiation-pressure force
becomes the dominant dissipation mechanism for the membrane.
By expressing the imprecision as equivalent thermal quanta of the
oscillator, n imp~C ’mSimp

x =8x2
zp, we see that the visibility of the thermal

noise above the imprecision no longer improves once the drive is much
greater than n d < 100 (Fig. 2d). This is because a linear decrease in Simp

x
is balanced by a linear increase in C ’m due to radiation-pressure damp-
ing. The asymptotic value of n imp is a direct measure of the efficiency of
the microwave measurement. Ideally, for a lossless circuit, a quantum-
limited microwave measurement would imply n imp 5 1/4. The incorp-
oration of the low-noise Josephson parametric amplifier improves
n imp close to this ideal limit, reducing the asymptotic value of n imp

from 70 to 1.9 quanta. This level of sensitivity is crucial for resolving
any residual thermal motion when cooling into the quantum regime.

Beginning from a cryostat temperature of 20 mK and a thermal
occupation of n T

m~40 quanta, the fundamental mechanical mode of
the membrane is cooled by radiation-pressure forces. Figure 3a shows
the displacement spectral density of the motional sideband as n d is
increased from 18 to 4,500 photons, along with fits to a Lorentzian
lineshape (shaded areas). As described above, this increased drive
results in three effects on the spectra: lower noise floor, wider reso-
nances and smaller shaded area. Because the shaded area corresponds
to the mean-square membrane displacement, it directly measures the
effective temperature of the mode. At a drive intensity with 4,000
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Figure 3 | Sideband cooling the mechanical mode to the ground state. a, The
displacement noise spectra and Lorentzian fits (shaded regions) for five
different drive powers. With higher power, the mechanical mode is both
damped (larger linewidth) and cooled (smaller area) by the radiation pressure
forces. b, Over a broader frequency span, the normalized sideband noise spectra
clearly show both the narrow mechanical peak and a broader cavity peak due to
finite occupancy of the mechanical and electrical modes, respectively. A small,
but resolvable, thermal population of the cavity appears as the drive power
increases, setting the limit for the final occupancy of the coupled

optomechanical system. At the highest drive power, the coupling rate between
the mechanical oscillator and the microwave cavity exceeds the intrinsic
dissipation of either mode, and the system hybridizes into optomechanical
normal modes. c, Starting in thermal equilibrium with the cryostat at T 5 20
mK, sideband cooling reduces the thermal occupancy of the mechanical mode
from n m 5 40 into the quantum regime, reaching a minimum of
n m 5 0.34 6 0.05. Error bars, s.d. These data demonstrate that the parametric
interaction between photons and phonons can initialize the strongly coupled,
electromechanical system in its quantum ground state.
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lowers Simp
x , resulting in a reduction in the white-noise background by a

factor of more than 30. This greatly increases the signal-to-noise ratio of
the membrane’s thermal motion, thereby reducing the integration time
required to resolve the thermal peak by a factor of 1,000. To investigate
the measurement sensitivity in the presence of dynamical back-action,
we regulate the cryostat temperature at 20 mK and increase the ampli-
tude of the detuned microwave drive while observing modifications in
the displacement spectral density. We quantify the strength of the drive
by the resulting number of photons n d in the microwave cavity. As
shown in Fig. 2b, the measurement imprecision Simp

x is inversely pro-
portional to n d. At the highest drive power (n d < 105), the absolute
displacement sensitivity is 5.5 3 10234 m2 Hz21.

As expected, the increased drive power also damps and cools the mech-
anicaloscillator3,22,23.ThetotalmechanicaldissipationrateC ’m~CmzC
is the sum of the intrinsic dissipation, Cm, and the radiation-pressure-
induced damping resulting from scattering photons to the upper/lower
sideband, C 5 C1 2 C2, where C 6 5 4g2k/[k2 1 4(D 6 Vm)2]. Here g
is the coupling rate between the cavity and the mechanical mode, which
depends on the amplitude of the drive: g~Gxzp

ffiffiffiffiffi
n d
p

. Figure 2c shows
the measured values of k, g and C ’m as the drive increases. The radi-
ation-pressure damping of the mechanical oscillator becomes
pronounced above a cavity drive amplitude of approximately 75
photons, at which point C ’m~2Cm and the mechanical linewidth
has doubled. Note that the increased damping rate can be switched
off at any time by removing the cooling drive, returning the mechanical
oscillator to its intrinsic quality factor, Qm.

Whereas the absolute value of the displacement imprecision
decreases with increasing power, the visibility of the thermal mech-
anical peak no longer improves once the radiation-pressure force
becomes the dominant dissipation mechanism for the membrane.
By expressing the imprecision as equivalent thermal quanta of the
oscillator, n imp~C ’mSimp

x =8x2
zp, we see that the visibility of the thermal

noise above the imprecision no longer improves once the drive is much
greater than n d < 100 (Fig. 2d). This is because a linear decrease in Simp

x
is balanced by a linear increase in C ’m due to radiation-pressure damp-
ing. The asymptotic value of n imp is a direct measure of the efficiency of
the microwave measurement. Ideally, for a lossless circuit, a quantum-
limited microwave measurement would imply n imp 5 1/4. The incorp-
oration of the low-noise Josephson parametric amplifier improves
n imp close to this ideal limit, reducing the asymptotic value of n imp

from 70 to 1.9 quanta. This level of sensitivity is crucial for resolving
any residual thermal motion when cooling into the quantum regime.

Beginning from a cryostat temperature of 20 mK and a thermal
occupation of n T

m~40 quanta, the fundamental mechanical mode of
the membrane is cooled by radiation-pressure forces. Figure 3a shows
the displacement spectral density of the motional sideband as n d is
increased from 18 to 4,500 photons, along with fits to a Lorentzian
lineshape (shaded areas). As described above, this increased drive
results in three effects on the spectra: lower noise floor, wider reso-
nances and smaller shaded area. Because the shaded area corresponds
to the mean-square membrane displacement, it directly measures the
effective temperature of the mode. At a drive intensity with 4,000
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Figure 3 | Sideband cooling the mechanical mode to the ground state. a, The
displacement noise spectra and Lorentzian fits (shaded regions) for five
different drive powers. With higher power, the mechanical mode is both
damped (larger linewidth) and cooled (smaller area) by the radiation pressure
forces. b, Over a broader frequency span, the normalized sideband noise spectra
clearly show both the narrow mechanical peak and a broader cavity peak due to
finite occupancy of the mechanical and electrical modes, respectively. A small,
but resolvable, thermal population of the cavity appears as the drive power
increases, setting the limit for the final occupancy of the coupled

optomechanical system. At the highest drive power, the coupling rate between
the mechanical oscillator and the microwave cavity exceeds the intrinsic
dissipation of either mode, and the system hybridizes into optomechanical
normal modes. c, Starting in thermal equilibrium with the cryostat at T 5 20
mK, sideband cooling reduces the thermal occupancy of the mechanical mode
from n m 5 40 into the quantum regime, reaching a minimum of
n m 5 0.34 6 0.05. Error bars, s.d. These data demonstrate that the parametric
interaction between photons and phonons can initialize the strongly coupled,
electromechanical system in its quantum ground state.
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lowers Simp
x , resulting in a reduction in the white-noise background by a

factor of more than 30. This greatly increases the signal-to-noise ratio of
the membrane’s thermal motion, thereby reducing the integration time
required to resolve the thermal peak by a factor of 1,000. To investigate
the measurement sensitivity in the presence of dynamical back-action,
we regulate the cryostat temperature at 20 mK and increase the ampli-
tude of the detuned microwave drive while observing modifications in
the displacement spectral density. We quantify the strength of the drive
by the resulting number of photons n d in the microwave cavity. As
shown in Fig. 2b, the measurement imprecision Simp

x is inversely pro-
portional to n d. At the highest drive power (n d < 105), the absolute
displacement sensitivity is 5.5 3 10234 m2 Hz21.

As expected, the increased drive power also damps and cools the mech-
anicaloscillator3,22,23.ThetotalmechanicaldissipationrateC ’m~CmzC
is the sum of the intrinsic dissipation, Cm, and the radiation-pressure-
induced damping resulting from scattering photons to the upper/lower
sideband, C 5 C1 2 C2, where C 6 5 4g2k/[k2 1 4(D 6 Vm)2]. Here g
is the coupling rate between the cavity and the mechanical mode, which
depends on the amplitude of the drive: g~Gxzp

ffiffiffiffiffi
n d
p

. Figure 2c shows
the measured values of k, g and C ’m as the drive increases. The radi-
ation-pressure damping of the mechanical oscillator becomes
pronounced above a cavity drive amplitude of approximately 75
photons, at which point C ’m~2Cm and the mechanical linewidth
has doubled. Note that the increased damping rate can be switched
off at any time by removing the cooling drive, returning the mechanical
oscillator to its intrinsic quality factor, Qm.

Whereas the absolute value of the displacement imprecision
decreases with increasing power, the visibility of the thermal mech-
anical peak no longer improves once the radiation-pressure force
becomes the dominant dissipation mechanism for the membrane.
By expressing the imprecision as equivalent thermal quanta of the
oscillator, n imp~C ’mSimp

x =8x2
zp, we see that the visibility of the thermal

noise above the imprecision no longer improves once the drive is much
greater than n d < 100 (Fig. 2d). This is because a linear decrease in Simp

x
is balanced by a linear increase in C ’m due to radiation-pressure damp-
ing. The asymptotic value of n imp is a direct measure of the efficiency of
the microwave measurement. Ideally, for a lossless circuit, a quantum-
limited microwave measurement would imply n imp 5 1/4. The incorp-
oration of the low-noise Josephson parametric amplifier improves
n imp close to this ideal limit, reducing the asymptotic value of n imp

from 70 to 1.9 quanta. This level of sensitivity is crucial for resolving
any residual thermal motion when cooling into the quantum regime.

Beginning from a cryostat temperature of 20 mK and a thermal
occupation of n T

m~40 quanta, the fundamental mechanical mode of
the membrane is cooled by radiation-pressure forces. Figure 3a shows
the displacement spectral density of the motional sideband as n d is
increased from 18 to 4,500 photons, along with fits to a Lorentzian
lineshape (shaded areas). As described above, this increased drive
results in three effects on the spectra: lower noise floor, wider reso-
nances and smaller shaded area. Because the shaded area corresponds
to the mean-square membrane displacement, it directly measures the
effective temperature of the mode. At a drive intensity with 4,000
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Figure 3 | Sideband cooling the mechanical mode to the ground state. a, The
displacement noise spectra and Lorentzian fits (shaded regions) for five
different drive powers. With higher power, the mechanical mode is both
damped (larger linewidth) and cooled (smaller area) by the radiation pressure
forces. b, Over a broader frequency span, the normalized sideband noise spectra
clearly show both the narrow mechanical peak and a broader cavity peak due to
finite occupancy of the mechanical and electrical modes, respectively. A small,
but resolvable, thermal population of the cavity appears as the drive power
increases, setting the limit for the final occupancy of the coupled

optomechanical system. At the highest drive power, the coupling rate between
the mechanical oscillator and the microwave cavity exceeds the intrinsic
dissipation of either mode, and the system hybridizes into optomechanical
normal modes. c, Starting in thermal equilibrium with the cryostat at T 5 20
mK, sideband cooling reduces the thermal occupancy of the mechanical mode
from n m 5 40 into the quantum regime, reaching a minimum of
n m 5 0.34 6 0.05. Error bars, s.d. These data demonstrate that the parametric
interaction between photons and phonons can initialize the strongly coupled,
electromechanical system in its quantum ground state.
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AMPLIFICATION

Lumped elements model

designing the cavity we decided to fabricate the device on a fused silica
substrate. This material has a low dielectric constant (er<4) relative to,
for instance, silicon (er<12), which is frequently used. This low value
contributes to minimizing the stray capacitance and allows us to obtain
the lowest value so far, C < 18 fF, for the effective parallel capacitance of
the nearly millimetre-sized cavity. These measures, and the remaining
parameters (L 5 21 nH, CS1 5 6 fF, CS2 5 12 fF and Cg 5 0.6 fF; Fig. 1a),
create a strong electromechanical coupling of g/2p5 1.8 MHz nm21

(equivalently, g/2p multiplied by the zero-point amplitude, x0, equals
40 Hz per phonon). An interdigital coupling capacitor, Cc < 6 fF, results
in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
width is cc~cEzcI<2p|6:2 MHz, where cI/2p5 1.4 MHz is the
damping rate due to internal losses.

The theoretical framework suitable to describe the amplification is
closely related to the methodology used to describe the sideband cool-
ing in optomechanical systems17,18,20–22. We describe the system in
terms of quantum Langevin equations with the aim of analysing the
effect of the pumping on the signal, and especially to detail the effects
of different types of fluctuation coupling to the system. The latter
comprise the quantum and thermal fluctuations related to the input
signal, the cavity and the mechanical resonator. In general, the para-
metric coupling between the cavity and the mechanical resonator gives
rise to the possibility of squeezed states23,24 and, hence, to back-action-
evading measurements.

Our detailed theoretical analysis (Supplementary Information)
gives the explicit value of the gain in each preferred quadrature, Gx

and Gy, and the average gain, Gav~(GxzGy)=2. The expressions for
the gains are well approximated by
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where the upper sign gives the expression for Gx and the lower sign
gives the expression for Gy. The main contribution to the amplifica-
tion is described by the ratio between the mechanical response
functions in the presence and the absence of the pump,
CM vð Þ~ v2

m{v2{icmv
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$ %
, where veff <vm.

The key role in the microwave amplification is that of the effective
mechanical damping, ceff 5 cm 2 dceff(v, nc) (Fig. 2c and Supplemen-
tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
mechanical damping. This reduction causes the amplification of the
signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm

&
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0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
negligible and the amplifier hence behaves as a typical phase-insensitive
amplifier characterized by the average gain, Gav. However, it is
noteworthy that by varying the parameters towards the ‘bad-cavity’ limit
(cc/D . 1), it is possible to achieve strong squeezing and, consequently,
noise-free amplification in one quadrature. This situation is opposite to
the findings in studies on two-tone back-action-evading measurements,
where the strongest squeezing is found in the good-cavity limit.

We use a cryostat with the temperature stabilized between 350 and
25 mK to carry out the measurements. The pump and signal tones
are combined at room temperature using a power splitter. Inside the
cryostat, the incoming irradiation is attenuated by 43 6 1.5 dB. The
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Figure 2 | Amplification mechanism. a, Explanation of the various frequencies
involved. The cavity is driven by a coherent field (the pump, ap) oscillating at
vp 5 vc 1 D, where vc is the cavity resonant frequency and D<vm= vc. The
weak input signal to be amplified, ain, is applied with a frequency near the cavity
resonance, such that vin 5 vp 2 vm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy
levels in the system. The (blue-detuned) pump, ap, induces a transition between a
state characterized by nc cavity photons and nm mechanical quanta, | nc, nmæ, and a
state characterized by nc 1 1 photons and nm 1 1 mechanical quanta, | nc 1 1,
nm 1 1æ. A key part of the amplification process is the effective damping, ceff,
which in the simplified scheme presented here represents the effective lifetime for
the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.
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During operation, this cavity is connected to coaxial cables via a coupling
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2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).
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in the external damping rate, cE/2p5 4.8 MHz. The total cavity line-
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rise to the possibility of squeezed states23,24 and, hence, to back-action-
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functions in the presence and the absence of the pump,
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tary Information). The value of dceff can be tuned by the pump. In
particular, blue-detuned driving results in a sizable reduction in the
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signal, described by the factor CM(v < vm) < cm/ceff. From equation
(1) and the definition of ceff, we establish the optimal value for the
pumped occupancy to be nc,crit~cccm

&
4g2x2

0. The corresponding
maximum average gain is Gav v~vmð Þ<4 4D=ccð Þ2. Above this
threshold, ceff R 0 and the coupled system becomes unstable5,7,25,26.

As indicated by the unequal values of Gx and Gy, the amplifier shows a
variable amount of squeezing. In particular, in the ‘good-cavity’ limit
(cc=D= 1) used in our experiment, the squeezing is expected to be
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where the strongest squeezing is found in the good-cavity limit.
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the cavity photons and thus models the parametric down-conversion of the pump
photons to the cavity resonant frequency. c, The damping decreases as the pump
field increases in power, and as ceff R 0 instability and parametric oscillations set
in. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is the theoretical result.

CL

Cc

Cg(x)

x

CS2

CS1

aout

320 nm
6–13 nm

8.
5 
μm

 

4 
μm

 

11 nm

6 nm

BeamGate

200 nm

Cc

400 μm 

Zin, ain

Zp, Dp
a 

b 

Figure 1 | Electromechanical microwave amplification. a, The variable
capacitor of the micromechanical resonator is in parallel with the cavity, as
shown in the lumped-element model. The input microwave field is
decomposed into a blue-detuned pump coherent field, ap (frequency, vp) and a
signal (frequency, vin) plus noise, ain 5 ain 1 dain. The output signal, aout, is the
amplified input signal. b, The device is dominated by the meandering high-
impedance cavity (false colour in red), which resonates at vc/2p5 6.982 GHz.
During operation, this cavity is connected to coaxial cables via a coupling
capacitor. The micromechanical beam resonator (frequency, vm/
2p5 32.5 MHz) couples the ends of the meander via the protrusions from
either end and through a 6–13-nm vacuum gap19 (right and inset).

RESEARCH LETTER

3 5 2 | N A T U R E | V O L 4 8 0 | 1 5 D E C E M B E R 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

Meandering microwave strip



AMPLIFICATION

Signal



OPTOMECHANICAL SYSTEMS
Microwave domain

First example of squeezing below the SQL

J. M. Pirkkalainen, et al. Phys. Rev. Lett. 115, 243601 (2015).

annihilation operators of the cavity. Although a value
G−=Gþ ≳ 1 would give rise to a high squeezing ratio, the
effective coupling needed for cooling this mode would
vanish. Hence, an optimum value is typically around
G−=Gþ ∼ 1.5.
The measurements are carried out inside a Bluefors

dry dilution refrigerator in the temperature interval
7 mK…200 mK. The cavity is first characterized having
the frequency ωc=2π ≃ 6.9004 GHz and coupled to the
transmission lines with the decay rates κEi=2π≃
50" 5 kHz, κEo=2π ≃ 270" 30 kHz through the input
and output ports, respectively. The internal losses are
characterized by the rate κI=2π ≃ 330" 40 kHz, and
the total cavity damping rate is κ ¼ κEi þ κEo þ κI≃
ð2πÞ × 650" 10 kHz. We operate in the good cavity
limit ωm=κ ≃ 20 ≫ 1, a prerequisite for efficient sideband
cooling and squeezing generation.
The mechanical resonator is first characterized using a

single pump tone at the red sideband. We choose very low
pump powers such that the cavity backaction damping rate
γ− ¼ 4G2

−=κ is much smaller than the intrinsic linewidth γm
of the mechanics. The emission at the cavity frequency then
shows the usual thermal motion peak at the motional
sideband at a frequency ωm=2π ≃ 13.032 MHz above
the pump. We obtain γm=2π ≃ 330 Hz corresponding to
the Q value Qm ≃ 3.9 × 104 from the data as in Fig. 1(e)
(γ− ∼ 12 Hz was subtracted from the fit result).
An important benchmarking for cavity optomechanical

experiments is how well the mechanical mode thermalizes
to the temperature T of the refrigerator. Here, we observe
the linear temperature dependence expected [as seen in
Fig. 2(a)] in equilibrium, kBT ¼ nTmℏωm down to≃25 mK.
Here, nTm is the equilibrium thermal phonon number defined
accordingly. In what follows, we operate at the minimum T

where we know that the mechanical mode is at 25 mK
corresponding to nTm ≃ 40 at low pump powers.
We proceed with a series of further calibrations on the

way towards demonstrating squeezing. Next, we perform a
regular sideband cooling experiment (Gþ ¼ 0) (see, e.g.,
Refs. [31–35]). For calibrating G− versus generator power,
we study the peak width γm þ γ− as a function of power at
modest values of G− ≪ κ. The most critical step, which
also will account for most of the final imprecision, is to
calibrate the system gain at the detection side. Each
sideband cooling spectrum (about 20 curves at different
power) are simultaneously fitted to theory with the same
gain, using the G− and nTm just calibrated. For details, see
Ref. [30]. We show examples of the sideband cooling
spectra by the black symbols in Figs. 2(b)–2(e), overlaid
with theoretical predictions from the standard formalism
using input-output theory [30]. For the plot, we have
subtracted a large background level due to the amplifier
noise, hence displaying only the signal part due to the
sample. We also find that the mechanical mode cools down
to a thermal occupation nm ≃ 0.38 (nm ¼ 0 corresponds
here to the ground state). The double peak seen in Fig. 2(e)
signifies the onset of the strong-coupling regime when
G− ∼ κ. The data are plotted in dimensionless units
(quanta), which are the natural units from the theory point
of view (W=Hz units are obtained by multiplying by ℏωc).
Given that we can cool the drum motion close to the

ground state provides a promising starting point for
creating squeezed motional states. We switch on the blue
pump while keeping the red on, obeying G− > Gþ for
stability. This creates a certain BG mode depending on the
ratio G−=Gþ. In order to ascertain which BG mode we
have, we calibrate the input line attenuations separately for
both pump generators. We select γ" ¼ 4G2

"=κ ≪ γm and

(a) (b) (c) (d)

(e)

FIG. 1 (color online). Setup of the microwave optomechanical squeezing experiment. (a) Idea of dissipative squeezing. The initial
fluctuation amplitudes of the quadratures are marked with dashed lines, and the final ones with solid lines. The gray circles denote the
quantum ground state. In sideband cooling (left), the initial fluctuations uniformly cool towards the ground state. In a suitably
engineered system (right), cooling can be quadrature dependent, hence leading to one quadrature becoming squeezed. (b, c) Optical
micrographs of the micromechanical device and of the cavity. There are two drum resonators connected to the cavity; however, only one
of them (within the dashed rectangle) operates. The cavity is asymmetrically coupled to the input port (left) and to the output port (right)
for transmission measurements. (d) The frequencies involved in the scheme. The cavity is pumped by two nonequal-amplitude
microwave tones at the sideband frequencies ω" ¼ ωc " ωm. (e) Example of the thermal motion signal measured at the refrigerator base
temperature, with the coupling G−=2π ≃ 1.3 kHz.
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without imposing any parametric modulation [30]; however,
the quadratures show much more phase dependence than
predicted. In the scheme, mixing products of the pumps
can appear both at 2ωm and 2ωc, the frequencies most
susceptible to causingparametricmodulationvia e.g. thermal
effects or nonlinearities [22,30]. Modulation of ωc out of
phase with respect to the pumps gives an excellent match to
the quadratures with the values quoted in Fig. 3. In order to
verify the existence of this parametric effect, we carried out a
measurement where we substantially detuned both pumps
from the sideband resonance, by∼! 6κ, such that the center
frequency stays at ωc [30]. This high detuning essentially
eliminates optomechanical phenomena, but a possible field
at 2ωc remains. Thus,wemeasure a spectrum consistentwith
a parametrically modulated oscillator with the correct phase.
A possible explanation is nonlinear dissipation in the cavity
[36] or a thermal effect. Although the parametric effects
have a dramatic influence on the quadratures of the output
spectrum, they only weakly affect the squeezing of the
mechanics; in the present case, we find a reduction by
about 10%.
For the error analysis, we use a worst-case scenario of

systematic errors from the calibrated parameters, and of
direct statistical errors of the adjustable parameters. We find
that the gain uncertainty is dominating. Because the shapes
of the spectra are sensitive to most parameters, but
squeezing is somewhat insensitive to any parameters in

(a) (b)

(c) (d)

FIG. 3 (color online). Squeezing inferred from the quadrature spectra. In all panels, blue and red refer to the cold and hot quadratures
X1 and X2, respectively. Black and green refer to the regular sideband cooling and the BG mode, respectively. The solid lines are theory
curves. The pump powers are increased from (a) to (d) as marked in the panels, while the G−=Gþ ≃ 1.43 ratio is kept constant. The
variances ΔX2

1 are marked, and a value less than 1 implies squeezing below vacuum. The amplitudes of parametric modulation to the
cavity are ϵc=2π ≃ 35, 48, 49, 56 kHz from (a) to (d).

(a)

(b)

FIG. 4 (color online). Tomography and final results. (a) The
quadrature data similar to Fig. 3(d), plotted at different LO phase
values at π=10 steps from 0 to π=2, from bottom to top. (b) The
X1 quadrature variance as a function of pump power. The blue
region signifies squeezing below the quantum limit. The inset
shows the quadrature variance from the data in (a).
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VIOLATION OF THE DUAN BOUND IN OPTOMECHANICS

Appropriately drive the cavity with two 
moveable mirrors

In the experimental setup, it’s 
actually a microwave cavity with two 
compliant capacitors [1] 3
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FIG. 1. Creating and detecting motional entanglement. a, Schematic of two vibrating mirrors coupled via an electromagnetic

cavity (left), and a micrograph showing the microwave optomechanical device consisting of a superconducting transmission line

resonator, whose opposite ends are connected by two mechanical drum-type oscillators marked with arrows (right). The device

is fabricated on a quartz chip out of aluminium. b, Spectral picture of the pump microwave frequencies (see text) applied about

the cavity spectrum. c, Two additional weak probe tones are applied in order to reconstruct the X+ collective mechanical

quadrature using a two-mode back-action evading measurement. d, Illustration of the correlations in two-mode squeezing in

terms of fluctuations (shaded) of the quadrature amplitudes. Left, the sum of X quadratures of the two oscillators fluctuates

less than the zero-point level (circle). Right, the di↵erence of P quadratures is similarly localized.

mechanical Bogoliubov modes which are obtained by a two-mode squeezing transformation on the original mechanical65

annihilation operators, viz. �1 = b1 cosh r+ b
†
2 sinh r, and �2 = b2 cosh r+ b

†
1 sinh r, where tanh r = G+/G�. Defining66

⌦ = (!2�!1)/2, and working in a rotating frame (at !c+⌦ for the cavity, (!2+!1)/2 for each mechanical oscillator),67

the linearized optomechanical Hamiltonian is:68
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Here G =
q
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2
+ is an e↵ective optomechanical coupling rate. This Hamiltonian is essentially that in Ref. [15],69

but with the pump tones set as in Ref. [21]. It describes cooling of the Bogoliubov modes by cavity cooling towards70

their ground state, which corresponds to a stabilised, two-mode squeezed state of the bipartite mechanical system.71

[1] C. F. Ockeloen-Korppi, et al. , Nature 556, 478 (2018).
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the linearized optomechanical Hamiltonian is:68

H = �⌦a†a+ ⌦
⇣
�
†
2�2 � �

†
1�1

⌘
+ G

h
a
† (�1 + �2) + a

⇣
�
†
1 + �

†
2

⌘i
. (1)

Here G =
q

G
2
� �G

2
+ is an e↵ective optomechanical coupling rate. This Hamiltonian is essentially that in Ref. [15],69

but with the pump tones set as in Ref. [21]. It describes cooling of the Bogoliubov modes by cavity cooling towards70

their ground state, which corresponds to a stabilised, two-mode squeezed state of the bipartite mechanical system.71

radiation-pressure coupling

[1] C. F. Ockeloen-Korppi, et al. , Nature 556, 478 (2018).
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dynamical protocols10,13 the system stays entangled indefinitely. Here, 
the use of non-degenerate mechanical frequencies is essential to ensure 
that both Bogoliubov modes are efficiently cooled by different fre-
quency components of the cavity. Asymmetries in the single-photon 
couplings g1 and g2 of the two oscillators, or non-zero detunings of the 
pump tones (by amounts δ±, see Fig. 1b) from the mechanical side-
bands, introduce additional terms in the Hamiltonian of equation (1), 
and one might expect the steady-state entanglement to be reduced. 
However, we find numerically that we can greatly compensate for asym-
metries in couplings by optimizing the pump detunings δ± ≠ 0.

As shown in Fig. 1d, an essential part of the entanglement verifica-
tion strategy consists of two-mode BAE detection16,17 operated in the 
same cavity mode, allowing mapping of the mechanical motion to the 
output field. This involves two relatively weak probe tones applied at 
ω ω ω ω≈ ± + /± ( ) 2d c 2 1 , approximately in the middle of the sideband 
frequencies. To preserve the same rotating frame for the creation and 
detection of the two-mode squeezing, we strictly require 
ω ω ω ω− = −+ − + −d d , ideally up to complete phase coherence between 
the tones. Similarly to the pump tones, the probe tones induce effective 
couplings α=± ±g g0

d  with amplitudes α±
d , which are equal in the  

ideal two-mode BAE case. Because we are using the same cavity mode 
for both creating the entanglement via the pump tones and detecting 
it, the pump spectra and the probe spectra need to be independent. This 
is achieved by ensuring that the mechanical contributions to the output 
cavity spectrum from the pump and probe tones have negligible spec-
tral overlap. Therefore, the faithful reconstruction of the X+ collective 
quadrature spectrum from the probe signal is possible. In contrast to 
BAE detection of single-mode squeezing25, both the pump and probe 
tones can be set to have optimal frequencies for the creation and detec-
tion of two-mode squeezing (see Fig. 1b–d).

In our device the two oscillators are separated by 600 µm, they have 
no direct coupling and the system is well described by equation (1). We 
use the fundamental drum modes of the oscillators with resonance 
frequencies ω1/(2π) ≈ 10.0 MHz and ω2/(2π) ≈ 11.3 MHz and linew-
idths γ1/(2π) ≈ 106 Hz and γ2/(2π) ≈ 144 Hz, respectively. The micro-
wave cavity, with a frequency of ωc/(2π) ≈ 5.5 GHz, has separate input 
and output ports. All the input signals are applied through a port cou-
pled weakly at a rate of κEi/ π ≈(2 ) 60 kHz , whereas the output is 
strongly coupled at κEo/ π ≈ .(2 ) 1 13 MHz. The cavity has also internal 
losses with a rate of κi/(2π) ≈ 190 kHz, and the sum of all the loss 
channels give a total linewidth of κ/(2π) ≈ 1.38 MHz. We find that our 
fabrication process can produce basically identical single-photon cou-
plings, g1/g2 ≈ 0.98, for two oscillators of different frequencies; in fact, 
this is more than sufficient for generating entanglement because we 
find numerically that an asymmetry of up to about 20% can be com-
pensated using detuning.

The motion of the mechanical oscillators is determined using the 
power scattered from the applied microwave (pump and probe) tones 
by their interaction with the oscillators. We collect this weak signal 
using standard techniques, including the use of a low-noise cryogenic 
microwave amplifier, followed by room-temperature signal analysis. 
Performing a sequence of calibrations, described in detail 
in Supplementary Information, is important for the experiment. First, 
using a standard thermal calibration with a single red-detuned tone, 
the mechanical modes are found to thermalize to equilibrium phonon 
occupation numbers of ≈n 411

T  and ≈n 302
T  for oscillators 1 and 2, 

respectively, at the base temperature of the dry dilution refrigerator, 
about 14 mK. These values give the initial variances of the collective 
quadratures ⟨ ⟩±X 2 T  and ⟨ ⟩ ≈±P 362 T , where the superscript refers to  
the temperature T.

Second, we apply standard sideband cooling to each mechanical 
oscillator separately using a single red-detuned pump (see Fig. 2 for 
data from oscillator 1). This allows the characterization of the behav-
iour of the system under intense pumping. Importantly, it enables us to 
calibrate the gain of the detection system for the later interpretation of 
the spectrum under two-tone pumping, as well as the effective coupling 
of the red-detuned tone. The goal of calibrating the probe tones is to use 

the total power in the probe spectra as a straightforward thermometer 
for the quadratures. Similarly to the case of the single red tone, we run 
a thermal calibration with both probe tones on, which allows us to 
determine the collective occupation number at a small probe power. 
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Fig. 1 | Creating and detecting motional entanglement. a, Schematic of 
two vibrating mirrors (frequencies ω1, ω2) coupled via an electromagnetic 
cavity with frequency ωc (left), and a micrograph showing the microwave 
optomechanical device consisting of a superconducting transmission-line 
resonator, whose opposite ends are connected by two mechanical  
drum-type oscillators marked with arrows (right). The device is fabricated 
from aluminium, on a quartz chip. b, Spectrum of the microwave 
frequencies involved, showing the pump tones at frequencies 
ω+  = ωc + ω2 + δ+ and ω− = ωc − ω1 + δ− (blue and red, respectively) and 
the probe tones with frequencies ω ±d  (grey). Here, Ω = (ω2 − ω1)/2. The 
bare-cavity response function is illustrated in green. c, The strong pump 
tones applied at frequencies ω± create all-mechanical entanglement and 
carry information as incoherently scattered microwave light (pump 
spectrum). d, Two additional weak probe tones are applied at frequencies 
ω ±d  to reconstruct the collective mechanical quadrature X+ using a two-
mode BAE measurement (probe spectrum). The curved arrows indicate 
the sideband processes that scatter phonons of frequencies ω1 (yellow) or 
ω2 (pink). e, Correlations in two-mode squeezing, shown in terms of 
fluctuations (shaded) of the quadrature amplitudes. Left, the sum of the X 
quadratures of the two oscillators fluctuates less than the zero-point level 
xzp (circle). Right, the difference between P quadratures is similarly 
localized below the zero-point fluctuation level pzp.
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quency components of the cavity. Asymmetries in the single-photon 
couplings g1 and g2 of the two oscillators, or non-zero detunings of the 
pump tones (by amounts δ±, see Fig. 1b) from the mechanical side-
bands, introduce additional terms in the Hamiltonian of equation (1), 
and one might expect the steady-state entanglement to be reduced. 
However, we find numerically that we can greatly compensate for asym-
metries in couplings by optimizing the pump detunings δ± ≠ 0.

As shown in Fig. 1d, an essential part of the entanglement verifica-
tion strategy consists of two-mode BAE detection16,17 operated in the 
same cavity mode, allowing mapping of the mechanical motion to the 
output field. This involves two relatively weak probe tones applied at 
ω ω ω ω≈ ± + /± ( ) 2d c 2 1 , approximately in the middle of the sideband 
frequencies. To preserve the same rotating frame for the creation and 
detection of the two-mode squeezing, we strictly require 
ω ω ω ω− = −+ − + −d d , ideally up to complete phase coherence between 
the tones. Similarly to the pump tones, the probe tones induce effective 
couplings α=± ±g g0

d  with amplitudes α±
d , which are equal in the  

ideal two-mode BAE case. Because we are using the same cavity mode 
for both creating the entanglement via the pump tones and detecting 
it, the pump spectra and the probe spectra need to be independent. This 
is achieved by ensuring that the mechanical contributions to the output 
cavity spectrum from the pump and probe tones have negligible spec-
tral overlap. Therefore, the faithful reconstruction of the X+ collective 
quadrature spectrum from the probe signal is possible. In contrast to 
BAE detection of single-mode squeezing25, both the pump and probe 
tones can be set to have optimal frequencies for the creation and detec-
tion of two-mode squeezing (see Fig. 1b–d).

In our device the two oscillators are separated by 600 µm, they have 
no direct coupling and the system is well described by equation (1). We 
use the fundamental drum modes of the oscillators with resonance 
frequencies ω1/(2π) ≈ 10.0 MHz and ω2/(2π) ≈ 11.3 MHz and linew-
idths γ1/(2π) ≈ 106 Hz and γ2/(2π) ≈ 144 Hz, respectively. The micro-
wave cavity, with a frequency of ωc/(2π) ≈ 5.5 GHz, has separate input 
and output ports. All the input signals are applied through a port cou-
pled weakly at a rate of κEi/ π ≈(2 ) 60 kHz , whereas the output is 
strongly coupled at κEo/ π ≈ .(2 ) 1 13 MHz. The cavity has also internal 
losses with a rate of κi/(2π) ≈ 190 kHz, and the sum of all the loss 
channels give a total linewidth of κ/(2π) ≈ 1.38 MHz. We find that our 
fabrication process can produce basically identical single-photon cou-
plings, g1/g2 ≈ 0.98, for two oscillators of different frequencies; in fact, 
this is more than sufficient for generating entanglement because we 
find numerically that an asymmetry of up to about 20% can be com-
pensated using detuning.

The motion of the mechanical oscillators is determined using the 
power scattered from the applied microwave (pump and probe) tones 
by their interaction with the oscillators. We collect this weak signal 
using standard techniques, including the use of a low-noise cryogenic 
microwave amplifier, followed by room-temperature signal analysis. 
Performing a sequence of calibrations, described in detail 
in Supplementary Information, is important for the experiment. First, 
using a standard thermal calibration with a single red-detuned tone, 
the mechanical modes are found to thermalize to equilibrium phonon 
occupation numbers of ≈n 411

T  and ≈n 302
T  for oscillators 1 and 2, 

respectively, at the base temperature of the dry dilution refrigerator, 
about 14 mK. These values give the initial variances of the collective 
quadratures ⟨ ⟩±X 2 T  and ⟨ ⟩ ≈±P 362 T , where the superscript refers to  
the temperature T.

Second, we apply standard sideband cooling to each mechanical 
oscillator separately using a single red-detuned pump (see Fig. 2 for 
data from oscillator 1). This allows the characterization of the behav-
iour of the system under intense pumping. Importantly, it enables us to 
calibrate the gain of the detection system for the later interpretation of 
the spectrum under two-tone pumping, as well as the effective coupling 
of the red-detuned tone. The goal of calibrating the probe tones is to use 

the total power in the probe spectra as a straightforward thermometer 
for the quadratures. Similarly to the case of the single red tone, we run 
a thermal calibration with both probe tones on, which allows us to 
determine the collective occupation number at a small probe power. 
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ω+  = ωc + ω2 + δ+ and ω− = ωc − ω1 + δ− (blue and red, respectively) and 
the probe tones with frequencies ω ±d  (grey). Here, Ω = (ω2 − ω1)/2. The 
bare-cavity response function is illustrated in green. c, The strong pump 
tones applied at frequencies ω± create all-mechanical entanglement and 
carry information as incoherently scattered microwave light (pump 
spectrum). d, Two additional weak probe tones are applied at frequencies 
ω ±d  to reconstruct the collective mechanical quadrature X+ using a two-
mode BAE measurement (probe spectrum). The curved arrows indicate 
the sideband processes that scatter phonons of frequencies ω1 (yellow) or 
ω2 (pink). e, Correlations in two-mode squeezing, shown in terms of 
fluctuations (shaded) of the quadrature amplitudes. Left, the sum of the X 
quadratures of the two oscillators fluctuates less than the zero-point level 
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red-sideband pump matches the calibration results, supporting our 
approach to handing this imbalance. We emphasize that the probe 
power calculation does not assume anything about the mechanical oscil-
lators or the dynamics induced by the pump tones, but only assumes an 
understanding of the dynamics associated with the probe tones.

In Fig. 4a and b we display a measurement of the φ
+X  quadrature 

variance, with 95% statistical confidence intervals. In the optimal case 
of φ ≈ 4°, by minimizing the variance in Fig.  3, we obtain 
⟨ ⟩ ≈ . ± .φ

+X( ) 0 41 0 042  ; that is, 0.9 dB below the vacuum noise. Several 
points fall well below the quantum zero-point noise level in both 
datasets A and B. Because the best theoretical fit to the measured 
probe spectra is obtained with dataset A, we base our main claims on 
these data. In dataset B, the theoretical fit shows good agreement with 
the measured pump spectrum although we believe that the probe 
spectrum was subject to larger phase drifts during the data 
acquisition.

Now we consider the measurement of the variance of the P− quad-
rature, which is needed for examining the Duan criterion and verifying 
quantum entanglement. As mentioned, two-mode BAE probe detection 
does not couple to P− or X−. We therefore use the other source of 
information available—the pump spectrum—and combine it with the 
information provided by the probe detection. The variances are eval-
uated using a least-squares fit to an analytical expression describing the 
pump spectrum, using the three bath temperatures as adjustable 
parameters, combined with the aforementioned calibrations. The fits 
are shown in Fig. 2, displaying excellent agreement with the experi-
ment. For dataset A, we obtain the variance ⟨ ⟩ ≈ . ± .−P 0 45 0 082  . For the 
X+ quadrature, we similarly get ⟨ ⟩ ≈ . ± .+X 0 46 0 082 , close to the value 
obtained from the direct BAE detection method described above. Given 
our knowledge of the system parameters and the dynamics of this 
scheme, the two quadratures are expected to have variances within 5% 
of one another (see Supplementary Information), providing additional, 
BAE-based evidence for the value of ⟨ ⟩−P 2 .

The error analysis of the probe measurement uses straightforward 
error propagation of the experimental calibration errors and of the 
statistical error from integrating the probe peak area. For the pump 

spectrum, the analysis is complicated because it involves more param-
eters, some of which can considerably affect the steady-state  
entanglement. Here we adopt an error analysis method known as the 
Bayesian Monte Carlo method, similar to that used in Wollman  
et al.25, to infer the parameters of the system, including uncertainties 
and correlations. This method generates a sample of the parameter 
distribution for which the theoretical model agrees with the measured 
pump spectra within the statistical uncertainty. We sample the  
posterior distributions of all parameters, and use them to estimate 
the confidence limits of the P− quadrature variance. We obtain that, 
at 96% probability, ⟨ ⟩< .−P 0 52  for the data in Fig. 3 (dataset A). This 
approach also yields the most likely value ⟨ ⟩ ≈ . ± .−P 0 42 0 082 , which 
agrees with the values presented above but is determined 
independently.

The best estimate of the Duan quantity is found by combining all this 
information—namely, ⟨ ⟩+X2 , obtained from probe detection, and ⟨ ⟩−P 2 , 
determined as explained above—which gives ⟨ ⟩ ⟨ ⟩+ = . ± .+ −X P 0 83 0 132 2  
for dataset A and ⟨ ⟩ ⟨ ⟩+ = . ± .+ −X P 0 72 0 182 2  for dataset B, where  
the errors represent the worst-case combination of the individual meas-
urements. The fluctuations hence satisfy the Duan bound for entangle-
ment, ⟨ ⟩ ⟨ ⟩+ <+ −X P 12 2 , with confidence better than 2 standard 
deviations.

Entangled mechanical oscillators combined with phase-sensitive 
measurement systems can find practical use in the precise reconstruc-
tion of classical resonant forces, which has implications for quantum 
metrology. The entanglement of massive mechanical oscillators estab-
lishes a new regime for experimental quantum mechanics. In the future 
one could demonstrate quantum teleportation of motional states or, 
if phonon number measurements are possible, test Clauser–Horne–
Shimony–Holt-type Bell inequalities29 with massive mechanical 
objects.

Data availability
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request. The source data and codes for the main-text 
figures are available at http://doi.org/10.5281/zenodo.1205319.
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dynamical protocols10,13 the system stays entangled indefinitely. Here, 
the use of non-degenerate mechanical frequencies is essential to ensure 
that both Bogoliubov modes are efficiently cooled by different fre-
quency components of the cavity. Asymmetries in the single-photon 
couplings g1 and g2 of the two oscillators, or non-zero detunings of the 
pump tones (by amounts δ±, see Fig. 1b) from the mechanical side-
bands, introduce additional terms in the Hamiltonian of equation (1), 
and one might expect the steady-state entanglement to be reduced. 
However, we find numerically that we can greatly compensate for asym-
metries in couplings by optimizing the pump detunings δ± ≠ 0.

As shown in Fig. 1d, an essential part of the entanglement verifica-
tion strategy consists of two-mode BAE detection16,17 operated in the 
same cavity mode, allowing mapping of the mechanical motion to the 
output field. This involves two relatively weak probe tones applied at 
ω ω ω ω≈ ± + /± ( ) 2d c 2 1 , approximately in the middle of the sideband 
frequencies. To preserve the same rotating frame for the creation and 
detection of the two-mode squeezing, we strictly require 
ω ω ω ω− = −+ − + −d d , ideally up to complete phase coherence between 
the tones. Similarly to the pump tones, the probe tones induce effective 
couplings α=± ±g g0

d  with amplitudes α±
d , which are equal in the  

ideal two-mode BAE case. Because we are using the same cavity mode 
for both creating the entanglement via the pump tones and detecting 
it, the pump spectra and the probe spectra need to be independent. This 
is achieved by ensuring that the mechanical contributions to the output 
cavity spectrum from the pump and probe tones have negligible spec-
tral overlap. Therefore, the faithful reconstruction of the X+ collective 
quadrature spectrum from the probe signal is possible. In contrast to 
BAE detection of single-mode squeezing25, both the pump and probe 
tones can be set to have optimal frequencies for the creation and detec-
tion of two-mode squeezing (see Fig. 1b–d).

In our device the two oscillators are separated by 600 µm, they have 
no direct coupling and the system is well described by equation (1). We 
use the fundamental drum modes of the oscillators with resonance 
frequencies ω1/(2π) ≈ 10.0 MHz and ω2/(2π) ≈ 11.3 MHz and linew-
idths γ1/(2π) ≈ 106 Hz and γ2/(2π) ≈ 144 Hz, respectively. The micro-
wave cavity, with a frequency of ωc/(2π) ≈ 5.5 GHz, has separate input 
and output ports. All the input signals are applied through a port cou-
pled weakly at a rate of κEi/ π ≈(2 ) 60 kHz , whereas the output is 
strongly coupled at κEo/ π ≈ .(2 ) 1 13 MHz. The cavity has also internal 
losses with a rate of κi/(2π) ≈ 190 kHz, and the sum of all the loss 
channels give a total linewidth of κ/(2π) ≈ 1.38 MHz. We find that our 
fabrication process can produce basically identical single-photon cou-
plings, g1/g2 ≈ 0.98, for two oscillators of different frequencies; in fact, 
this is more than sufficient for generating entanglement because we 
find numerically that an asymmetry of up to about 20% can be com-
pensated using detuning.

The motion of the mechanical oscillators is determined using the 
power scattered from the applied microwave (pump and probe) tones 
by their interaction with the oscillators. We collect this weak signal 
using standard techniques, including the use of a low-noise cryogenic 
microwave amplifier, followed by room-temperature signal analysis. 
Performing a sequence of calibrations, described in detail 
in Supplementary Information, is important for the experiment. First, 
using a standard thermal calibration with a single red-detuned tone, 
the mechanical modes are found to thermalize to equilibrium phonon 
occupation numbers of ≈n 411

T  and ≈n 302
T  for oscillators 1 and 2, 

respectively, at the base temperature of the dry dilution refrigerator, 
about 14 mK. These values give the initial variances of the collective 
quadratures ⟨ ⟩±X 2 T  and ⟨ ⟩ ≈±P 362 T , where the superscript refers to  
the temperature T.

Second, we apply standard sideband cooling to each mechanical 
oscillator separately using a single red-detuned pump (see Fig. 2 for 
data from oscillator 1). This allows the characterization of the behav-
iour of the system under intense pumping. Importantly, it enables us to 
calibrate the gain of the detection system for the later interpretation of 
the spectrum under two-tone pumping, as well as the effective coupling 
of the red-detuned tone. The goal of calibrating the probe tones is to use 

the total power in the probe spectra as a straightforward thermometer 
for the quadratures. Similarly to the case of the single red tone, we run 
a thermal calibration with both probe tones on, which allows us to 
determine the collective occupation number at a small probe power. 
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resonator, whose opposite ends are connected by two mechanical  
drum-type oscillators marked with arrows (right). The device is fabricated 
from aluminium, on a quartz chip. b, Spectrum of the microwave 
frequencies involved, showing the pump tones at frequencies 
ω+  = ωc + ω2 + δ+ and ω− = ωc − ω1 + δ− (blue and red, respectively) and 
the probe tones with frequencies ω ±d  (grey). Here, Ω = (ω2 − ω1)/2. The 
bare-cavity response function is illustrated in green. c, The strong pump 
tones applied at frequencies ω± create all-mechanical entanglement and 
carry information as incoherently scattered microwave light (pump 
spectrum). d, Two additional weak probe tones are applied at frequencies 
ω ±d  to reconstruct the collective mechanical quadrature X+ using a two-
mode BAE measurement (probe spectrum). The curved arrows indicate 
the sideband processes that scatter phonons of frequencies ω1 (yellow) or 
ω2 (pink). e, Correlations in two-mode squeezing, shown in terms of 
fluctuations (shaded) of the quadrature amplitudes. Left, the sum of the X 
quadratures of the two oscillators fluctuates less than the zero-point level 
xzp (circle). Right, the difference between P quadratures is similarly 
localized below the zero-point fluctuation level pzp.
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red-sideband pump matches the calibration results, supporting our 
approach to handing this imbalance. We emphasize that the probe 
power calculation does not assume anything about the mechanical oscil-
lators or the dynamics induced by the pump tones, but only assumes an 
understanding of the dynamics associated with the probe tones.

In Fig. 4a and b we display a measurement of the φ
+X  quadrature 

variance, with 95% statistical confidence intervals. In the optimal case 
of φ ≈ 4°, by minimizing the variance in Fig.  3, we obtain 
⟨ ⟩ ≈ . ± .φ

+X( ) 0 41 0 042  ; that is, 0.9 dB below the vacuum noise. Several 
points fall well below the quantum zero-point noise level in both 
datasets A and B. Because the best theoretical fit to the measured 
probe spectra is obtained with dataset A, we base our main claims on 
these data. In dataset B, the theoretical fit shows good agreement with 
the measured pump spectrum although we believe that the probe 
spectrum was subject to larger phase drifts during the data 
acquisition.

Now we consider the measurement of the variance of the P− quad-
rature, which is needed for examining the Duan criterion and verifying 
quantum entanglement. As mentioned, two-mode BAE probe detection 
does not couple to P− or X−. We therefore use the other source of 
information available—the pump spectrum—and combine it with the 
information provided by the probe detection. The variances are eval-
uated using a least-squares fit to an analytical expression describing the 
pump spectrum, using the three bath temperatures as adjustable 
parameters, combined with the aforementioned calibrations. The fits 
are shown in Fig. 2, displaying excellent agreement with the experi-
ment. For dataset A, we obtain the variance ⟨ ⟩ ≈ . ± .−P 0 45 0 082  . For the 
X+ quadrature, we similarly get ⟨ ⟩ ≈ . ± .+X 0 46 0 082 , close to the value 
obtained from the direct BAE detection method described above. Given 
our knowledge of the system parameters and the dynamics of this 
scheme, the two quadratures are expected to have variances within 5% 
of one another (see Supplementary Information), providing additional, 
BAE-based evidence for the value of ⟨ ⟩−P 2 .

The error analysis of the probe measurement uses straightforward 
error propagation of the experimental calibration errors and of the 
statistical error from integrating the probe peak area. For the pump 

spectrum, the analysis is complicated because it involves more param-
eters, some of which can considerably affect the steady-state  
entanglement. Here we adopt an error analysis method known as the 
Bayesian Monte Carlo method, similar to that used in Wollman  
et al.25, to infer the parameters of the system, including uncertainties 
and correlations. This method generates a sample of the parameter 
distribution for which the theoretical model agrees with the measured 
pump spectra within the statistical uncertainty. We sample the  
posterior distributions of all parameters, and use them to estimate 
the confidence limits of the P− quadrature variance. We obtain that, 
at 96% probability, ⟨ ⟩< .−P 0 52  for the data in Fig. 3 (dataset A). This 
approach also yields the most likely value ⟨ ⟩ ≈ . ± .−P 0 42 0 082 , which 
agrees with the values presented above but is determined 
independently.

The best estimate of the Duan quantity is found by combining all this 
information—namely, ⟨ ⟩+X2 , obtained from probe detection, and ⟨ ⟩−P 2 , 
determined as explained above—which gives ⟨ ⟩ ⟨ ⟩+ = . ± .+ −X P 0 83 0 132 2  
for dataset A and ⟨ ⟩ ⟨ ⟩+ = . ± .+ −X P 0 72 0 182 2  for dataset B, where  
the errors represent the worst-case combination of the individual meas-
urements. The fluctuations hence satisfy the Duan bound for entangle-
ment, ⟨ ⟩ ⟨ ⟩+ <+ −X P 12 2 , with confidence better than 2 standard 
deviations.

Entangled mechanical oscillators combined with phase-sensitive 
measurement systems can find practical use in the precise reconstruc-
tion of classical resonant forces, which has implications for quantum 
metrology. The entanglement of massive mechanical oscillators estab-
lishes a new regime for experimental quantum mechanics. In the future 
one could demonstrate quantum teleportation of motional states or, 
if phonon number measurements are possible, test Clauser–Horne–
Shimony–Holt-type Bell inequalities29 with massive mechanical 
objects.

Data availability
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request. The source data and codes for the main-text 
figures are available at http://doi.org/10.5281/zenodo.1205319.
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Fig. 4 | Fluctuations of collective quadratures. a, The φ
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variance, determined from the probe spectra. The black circles represent 
dataset A and the red circles correspond to dataset B. b, Magnification of a. 
c, The Duan quantity for entanglement as a function of the probe tone 
phase φ. d, The Duan quantity for the optimal value of φ, as a function of 
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are theoretical fits to the corresponding datasets, obtained using the bath 
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marks the quantum zero-point fluctuations level. The error bars denote 
statistical confidence of two standard deviations.
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dynamical protocols10,13 the system stays entangled indefinitely. Here, 
the use of non-degenerate mechanical frequencies is essential to ensure 
that both Bogoliubov modes are efficiently cooled by different fre-
quency components of the cavity. Asymmetries in the single-photon 
couplings g1 and g2 of the two oscillators, or non-zero detunings of the 
pump tones (by amounts δ±, see Fig. 1b) from the mechanical side-
bands, introduce additional terms in the Hamiltonian of equation (1), 
and one might expect the steady-state entanglement to be reduced. 
However, we find numerically that we can greatly compensate for asym-
metries in couplings by optimizing the pump detunings δ± ≠ 0.

As shown in Fig. 1d, an essential part of the entanglement verifica-
tion strategy consists of two-mode BAE detection16,17 operated in the 
same cavity mode, allowing mapping of the mechanical motion to the 
output field. This involves two relatively weak probe tones applied at 
ω ω ω ω≈ ± + /± ( ) 2d c 2 1 , approximately in the middle of the sideband 
frequencies. To preserve the same rotating frame for the creation and 
detection of the two-mode squeezing, we strictly require 
ω ω ω ω− = −+ − + −d d , ideally up to complete phase coherence between 
the tones. Similarly to the pump tones, the probe tones induce effective 
couplings α=± ±g g0

d  with amplitudes α±
d , which are equal in the  

ideal two-mode BAE case. Because we are using the same cavity mode 
for both creating the entanglement via the pump tones and detecting 
it, the pump spectra and the probe spectra need to be independent. This 
is achieved by ensuring that the mechanical contributions to the output 
cavity spectrum from the pump and probe tones have negligible spec-
tral overlap. Therefore, the faithful reconstruction of the X+ collective 
quadrature spectrum from the probe signal is possible. In contrast to 
BAE detection of single-mode squeezing25, both the pump and probe 
tones can be set to have optimal frequencies for the creation and detec-
tion of two-mode squeezing (see Fig. 1b–d).

In our device the two oscillators are separated by 600 µm, they have 
no direct coupling and the system is well described by equation (1). We 
use the fundamental drum modes of the oscillators with resonance 
frequencies ω1/(2π) ≈ 10.0 MHz and ω2/(2π) ≈ 11.3 MHz and linew-
idths γ1/(2π) ≈ 106 Hz and γ2/(2π) ≈ 144 Hz, respectively. The micro-
wave cavity, with a frequency of ωc/(2π) ≈ 5.5 GHz, has separate input 
and output ports. All the input signals are applied through a port cou-
pled weakly at a rate of κEi/ π ≈(2 ) 60 kHz , whereas the output is 
strongly coupled at κEo/ π ≈ .(2 ) 1 13 MHz. The cavity has also internal 
losses with a rate of κi/(2π) ≈ 190 kHz, and the sum of all the loss 
channels give a total linewidth of κ/(2π) ≈ 1.38 MHz. We find that our 
fabrication process can produce basically identical single-photon cou-
plings, g1/g2 ≈ 0.98, for two oscillators of different frequencies; in fact, 
this is more than sufficient for generating entanglement because we 
find numerically that an asymmetry of up to about 20% can be com-
pensated using detuning.

The motion of the mechanical oscillators is determined using the 
power scattered from the applied microwave (pump and probe) tones 
by their interaction with the oscillators. We collect this weak signal 
using standard techniques, including the use of a low-noise cryogenic 
microwave amplifier, followed by room-temperature signal analysis. 
Performing a sequence of calibrations, described in detail 
in Supplementary Information, is important for the experiment. First, 
using a standard thermal calibration with a single red-detuned tone, 
the mechanical modes are found to thermalize to equilibrium phonon 
occupation numbers of ≈n 411

T  and ≈n 302
T  for oscillators 1 and 2, 

respectively, at the base temperature of the dry dilution refrigerator, 
about 14 mK. These values give the initial variances of the collective 
quadratures ⟨ ⟩±X 2 T  and ⟨ ⟩ ≈±P 362 T , where the superscript refers to  
the temperature T.

Second, we apply standard sideband cooling to each mechanical 
oscillator separately using a single red-detuned pump (see Fig. 2 for 
data from oscillator 1). This allows the characterization of the behav-
iour of the system under intense pumping. Importantly, it enables us to 
calibrate the gain of the detection system for the later interpretation of 
the spectrum under two-tone pumping, as well as the effective coupling 
of the red-detuned tone. The goal of calibrating the probe tones is to use 

the total power in the probe spectra as a straightforward thermometer 
for the quadratures. Similarly to the case of the single red tone, we run 
a thermal calibration with both probe tones on, which allows us to 
determine the collective occupation number at a small probe power. 
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Fig. 1 | Creating and detecting motional entanglement. a, Schematic of 
two vibrating mirrors (frequencies ω1, ω2) coupled via an electromagnetic 
cavity with frequency ωc (left), and a micrograph showing the microwave 
optomechanical device consisting of a superconducting transmission-line 
resonator, whose opposite ends are connected by two mechanical  
drum-type oscillators marked with arrows (right). The device is fabricated 
from aluminium, on a quartz chip. b, Spectrum of the microwave 
frequencies involved, showing the pump tones at frequencies 
ω+  = ωc + ω2 + δ+ and ω− = ωc − ω1 + δ− (blue and red, respectively) and 
the probe tones with frequencies ω ±d  (grey). Here, Ω = (ω2 − ω1)/2. The 
bare-cavity response function is illustrated in green. c, The strong pump 
tones applied at frequencies ω± create all-mechanical entanglement and 
carry information as incoherently scattered microwave light (pump 
spectrum). d, Two additional weak probe tones are applied at frequencies 
ω ±d  to reconstruct the collective mechanical quadrature X+ using a two-
mode BAE measurement (probe spectrum). The curved arrows indicate 
the sideband processes that scatter phonons of frequencies ω1 (yellow) or 
ω2 (pink). e, Correlations in two-mode squeezing, shown in terms of 
fluctuations (shaded) of the quadrature amplitudes. Left, the sum of the X 
quadratures of the two oscillators fluctuates less than the zero-point level 
xzp (circle). Right, the difference between P quadratures is similarly 
localized below the zero-point fluctuation level pzp.
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red-sideband pump matches the calibration results, supporting our 
approach to handing this imbalance. We emphasize that the probe 
power calculation does not assume anything about the mechanical oscil-
lators or the dynamics induced by the pump tones, but only assumes an 
understanding of the dynamics associated with the probe tones.

In Fig. 4a and b we display a measurement of the φ
+X  quadrature 

variance, with 95% statistical confidence intervals. In the optimal case 
of φ ≈ 4°, by minimizing the variance in Fig.  3, we obtain 
⟨ ⟩ ≈ . ± .φ

+X( ) 0 41 0 042  ; that is, 0.9 dB below the vacuum noise. Several 
points fall well below the quantum zero-point noise level in both 
datasets A and B. Because the best theoretical fit to the measured 
probe spectra is obtained with dataset A, we base our main claims on 
these data. In dataset B, the theoretical fit shows good agreement with 
the measured pump spectrum although we believe that the probe 
spectrum was subject to larger phase drifts during the data 
acquisition.

Now we consider the measurement of the variance of the P− quad-
rature, which is needed for examining the Duan criterion and verifying 
quantum entanglement. As mentioned, two-mode BAE probe detection 
does not couple to P− or X−. We therefore use the other source of 
information available—the pump spectrum—and combine it with the 
information provided by the probe detection. The variances are eval-
uated using a least-squares fit to an analytical expression describing the 
pump spectrum, using the three bath temperatures as adjustable 
parameters, combined with the aforementioned calibrations. The fits 
are shown in Fig. 2, displaying excellent agreement with the experi-
ment. For dataset A, we obtain the variance ⟨ ⟩ ≈ . ± .−P 0 45 0 082  . For the 
X+ quadrature, we similarly get ⟨ ⟩ ≈ . ± .+X 0 46 0 082 , close to the value 
obtained from the direct BAE detection method described above. Given 
our knowledge of the system parameters and the dynamics of this 
scheme, the two quadratures are expected to have variances within 5% 
of one another (see Supplementary Information), providing additional, 
BAE-based evidence for the value of ⟨ ⟩−P 2 .

The error analysis of the probe measurement uses straightforward 
error propagation of the experimental calibration errors and of the 
statistical error from integrating the probe peak area. For the pump 

spectrum, the analysis is complicated because it involves more param-
eters, some of which can considerably affect the steady-state  
entanglement. Here we adopt an error analysis method known as the 
Bayesian Monte Carlo method, similar to that used in Wollman  
et al.25, to infer the parameters of the system, including uncertainties 
and correlations. This method generates a sample of the parameter 
distribution for which the theoretical model agrees with the measured 
pump spectra within the statistical uncertainty. We sample the  
posterior distributions of all parameters, and use them to estimate 
the confidence limits of the P− quadrature variance. We obtain that, 
at 96% probability, ⟨ ⟩< .−P 0 52  for the data in Fig. 3 (dataset A). This 
approach also yields the most likely value ⟨ ⟩ ≈ . ± .−P 0 42 0 082 , which 
agrees with the values presented above but is determined 
independently.

The best estimate of the Duan quantity is found by combining all this 
information—namely, ⟨ ⟩+X2 , obtained from probe detection, and ⟨ ⟩−P 2 , 
determined as explained above—which gives ⟨ ⟩ ⟨ ⟩+ = . ± .+ −X P 0 83 0 132 2  
for dataset A and ⟨ ⟩ ⟨ ⟩+ = . ± .+ −X P 0 72 0 182 2  for dataset B, where  
the errors represent the worst-case combination of the individual meas-
urements. The fluctuations hence satisfy the Duan bound for entangle-
ment, ⟨ ⟩ ⟨ ⟩+ <+ −X P 12 2 , with confidence better than 2 standard 
deviations.

Entangled mechanical oscillators combined with phase-sensitive 
measurement systems can find practical use in the precise reconstruc-
tion of classical resonant forces, which has implications for quantum 
metrology. The entanglement of massive mechanical oscillators estab-
lishes a new regime for experimental quantum mechanics. In the future 
one could demonstrate quantum teleportation of motional states or, 
if phonon number measurements are possible, test Clauser–Horne–
Shimony–Holt-type Bell inequalities29 with massive mechanical 
objects.

Data availability
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request. The source data and codes for the main-text 
figures are available at http://doi.org/10.5281/zenodo.1205319.
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Fig. 4 | Fluctuations of collective quadratures. a, The φ
+X  quadrature 

variance, determined from the probe spectra. The black circles represent 
dataset A and the red circles correspond to dataset B. b, Magnification of a. 
c, The Duan quantity for entanglement as a function of the probe tone 
phase φ. d, The Duan quantity for the optimal value of φ, as a function of 

the strength of the red-detuned pump tone. The black and red solid lines 
are theoretical fits to the corresponding datasets, obtained using the bath 
temperatures determined by the pump spectra. The blue horizontal line 
marks the quantum zero-point fluctuations level. The error bars denote 
statistical confidence of two standard deviations.
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