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2 3 Beamlines at PETRA I

* EMBL Hamburg operates the entire beamlines beginning at the ‘frontend’

* The beamlines are embedded in the Integrated Facility for Structural Biology
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Outline:

-Quality control
-Protein Folding
-Biophysical characterization



Quality control

-What does it mean “Protein quality control”
And... why do we care?



Quality control of purified proteins to improve research
data reproducibility:

Little pain, lots to gain?

Percentage of samples tested

ARBRE-MOBIEU (Association of Resources for Biophysical research in Europe — MOlecular
Blophysic in EUrope) and P4EU (Protein Production and Purification Partnership in EUrope)

90

= Reproducible

® Irreproducible/Biological Reagents and Reference Materials

® Irreproducible/Study Design

= Irreproducible/Data Analysis and Reporting

Irreproducible/Laboratory Protocols
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Figure 1. Categorization of preclinical research spending in the US into levels of
reproducibility and common errors leading to data irreproducibility (2012 data, all
figures in US $billions, adapted with permission from reference (3)). The ‘Biological
Reagents and Reference Materials’ category includes approximately $0.5bn spent on
poor quality commercial antibodies (4).

Begley, C.G. & Ioannidis, J.P. Reproducibility in science: improving the standard for basic
and preclinical research. Circ. Res. 116, 116-26 (2015).

Figure 2. Summary of sample testing and results. ‘Comprehensively documented’ is
an evaluation of the documentation supplied with the protein samples and reflects our
opinion on whether this is sufficient to easily reproduce the sample. Samples
‘Analysed for Purity’ have been evaluated using SDS-PAGE, CE, RPLC or similar
analytical techniques. Samples ‘Analysed for Dispersity’ were evaluated using SEC,
DLS, SEC-MALS or Field-Flow Fractionation, Field-Flow Fractionation-MALS or
Analytical Ultra-Centrifugation. Identity and Integrity was evaluated using MS
(bottom up or top down as appropriate).

e 186 samples from 47 laboratories
* 30% samples failed at least in one QC test



Quality control of purified protein
Best practice recommendations

Guideline

i) Minimal quality control parameters that should be tested on protein sample
* Purity & integrity

* Homogeneity (aggregation state)

* |dentity

iii) Extended quality control parameters

* General quality test by UV spectroscopy

* Homogeneity Conformational stability/folding state
* Optimization of storage conditions

* Batch-to-batch consistency




Protein Folding

20" different possible polypeptide chains of n amino acids long

- |t is estimated that the there are between 1078 to 1082 atoms in the known,
observable universe.

Only a very small fraction of this vast set of conceivable polypeptide chains
would adopt a single, stable three-dimensional conformation—by some
estimates, less than one in a billion.



Protein folding
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Quiz:

* Who has ever done a refolding experiment?



Quiz:

* Who has ever done a refolding experiment?
* Who has ever done a mini-prep?



In vitro denaturation and renaturation of proteins
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Christian Anfinsen’s experiment

Treatment with an 8 M urea solution
containing mercaptoethanol completely
denatures most proteins.

The urea breaks intramolecular hydrogen
and hydrophobic bonds, and the
mercaptoethanol reduces each disulfide
bridge (—S—S-) to two sulfhydryl (—SH)
groups.

When these chemicals are removed by
dialysis, the —=SH groups on the unfolded
chain oxidize spontaneously to re-form
disulfide bridges, and the polypeptide chain
simultaneously refolds into its native
conformation and activity is reestablished.

Nobel prize in Chemistry 1972



The thermodynamic hypothesis

”3D structure of a native protein in its normal
physiological milieu (solvent, pH, ionic strength,
presence of other components such as metal ions or
prosthetic groups, temperature, etc.) is the one in

which the Gibbs free energy of the whole system is
lowest”

e the native conformation is determined by the totality of
interatomic interactions and hence by the amino acid
sequence, in a given environment.

e Interms of natural selection: a protein molecule only

makes stable, structural sense when it exists under
conditions similar to those for which it was selected “the

so-called physiological state”.



The Two-states model
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The critical region: the transition state

Representative starting structures
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Intrinsically disordered proteins
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How to study them? Mark Wells et al. PNAS 2008:105:5762-5767
* Bioinformatics
e SAXS
e CD

* NMR



Protein folding on membrane proteins

Folding a-helical membrane proteins

A8 * Helical hairpin hypothesis
1 a Cytoplasm
* |nsertion of a hairpin structure
composed of two helices into the
AGY = +46 lAGO = 60 nonpolar interior of the bilayer

__________________________________________________ * |nsertion is driven by free energy
, C~.__ N —~ Polar headgroups arising from burying hydrophobic

AGY = — 106 Hydrophobic helical surfaces
lipid region  Alternative pathway of inserting

et o Polar headeroups unfolded peptide/random coil is

w2 1, energetically unfavored
Helical hairpin




Scattering

Solubility
Aggregation
Secondary structure contain

Stability

Sampling Protein Folding
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Sampling Protein Folding

Solubility

Aggregation

Secondary structure contain
Stability

* Screen for protein Stability



Fluorescence F

Differential Scanning Fluorimetry
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Thermofluor

96-well PCR-plate with 21 pl solution per well

+4 C
quick spin

20 uM
protein solution

quick spin @M c

36x2p\

Add the solutions with the
help of a repeator pipette

quick spin$ +4 C
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Data processing

*

SYPRO Orange
5000X DMSO-solution

79 pl of water + 1 pl
of SYPRO Orange

80 pl of working
dye-solution 62.5X

A}XZUI

Seal the PCR-plate
with an optical clear lid

MylQ RT-PCR

Gradient 5°C to 95°C (1°C/ min)
Ex 485/20X; Em 530/30X

" 2h
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Sypro Orange/ ANS fluorescent properties will change as it binds to
hydrophobic regions on the protein surface

8-anilino, 1-naphthalene sulfonate
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mational transition at the diferent denaturant concentrations indi-
cated.



nanoDSF

NanoTemper Technologies Prometheus NT.48
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Principle behind the nanoDSF. Increasing temperature causes
protein unfolding that can be assessed by monitoring changes of

tryptophan fluorenscence at 330nm and 350nm wavelength.



Fluorescence

The thermal unfolding transition midpoint (Tm)

12 _g_F330/350ratio

1.1

1.0

0.9 Thermal element Fluorescence

15-95°C detection

0.8 Sample 330 nm
volume \ = ﬂ:sso "

0.7 10 i Excitation LED

10 20 30 40 50 60 70 |80 90
Temperature, °C

79.1°C

DO U * ratio F330/350 against the
temperature
* Tmis determined by first derivate
analysis



Aggregation

Static light scattering
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High-throughput screening for IMPs stability

40% samples processed in the SPC are membrane proteins

Introduction
* |IMP stability in detergent or membrane-like environments is
the bottleneck for structural studies

* Detergent solubilization from membranes is usually the first
step in the workflow

* Looking for a simple high-throughput screening method to
identify optimal conditions for membrane protein stabilization



High-throughput screening for IMPs stability

Objective

following nDSF and scattering upon
thermal denaturation

(de-)stabilization effects of detergents
find suitable conditions for downstream
handling during purification
thermodynamic parameters (Tm, Tagg,
Tonset)

We selected 9 IMPs to benchmark our
protocol

Unstable Stable

Kotov et al. Scientific Reports 2019



We selected 9 Integral membrane proteins (targets)

DgoT

?

ABC

Kv1l Ij1

DgoT | E. coli MES transporters f;ﬁst;‘: rtg:jactonate 14 6E9N, 6E90

MdfA | E.coli MES transporter multi drug resistance 9 2(23[3)1’ ,‘tSZEcl)JV(\)L 47P2,
DtpA | E. coli MES transporter peptide transporter 10 6GS1, 6GS4, 6GS7

Kvl Pseudomonas aeruginosa | unknown unknown 17 —

Ij1 E. coli ABC-Transporter ion transport 22 <

P2X4 Homo sapiens P2X ionotropic receptors ;igul;l :;Z:hiils:iijaﬁng 6 4DWO0, 4DW1 (zebrafish)
BR Halobacterium salinarum | 7TM receptor proton pump 8 4MD1, 4MD2, 4XX]
LacY E. coli MES transporter transport of beta-galactosides | 5 1PV6

Iml E. coli HisKA Kinase 2 S

?

kinase



Membranes
solubilized in
1—2% DDM
DDM as
starting
detergent in
SEC
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Our pipeline

Purification with “best guess” detergent (DDM)

¢

Dilution of initial detergent and addition
of excess screen detergent

¢

Equilibrate 1 hour for detergent exchange

.
G

Simultaneous measurement of
protein unfolding and aggregation

q

Non-linear curve-fitting to estimate T and T, |
and onset temperatures

¢

Removal of failed samples based on
fit parameter errors

¢

Top hits in thermal stability and solubility

Kotov et al. Scientific Reports 2019
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Tm vs Tonset
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Correlation between IMP stability and micelle size

Sample Readout n Spearman’s p

Ratio 21 0.70
DtpA

Scattering 27 0.24

Ratio 15 0.43
DgoT

Scattering 33 0.25

F330 8 0.00
LacY

Scattering 27 -0.04

Ratio 38 0.46
Kvl

Scattering 37 0.66

Ratio 8 0.45
Ij1

Scattering 29 0.65
Im1 Ratio 9 0.78

Ratio 33 0.74
MdfA

Scattering 36 0.20
P2X4 Ratio 42 0.80

F330 28 0.84
BR

Scattering 28 0.73

Coefficients approaching zero show no correlation between variables while those
approaching 1 indicate a positive correlation (Y values increase as the X values increase).



Correlation between IMP stability and micelle size

Sample Readout n Spearman’s p
Ratio 21 0.70
DtpA
Scattering 27 0.24
Ratio 15 0.43
DgoT
Scattering 33 0.25
F330 8 0.00
LacY

Regarding crystallization, shorter chain detergents are preferred as they
allow for better crystal packing and better diffracting crystals. The goal is
to find the shortest possible detergent that does not cause the protein

to unfold!
Iml Ratio Y 0.78
Ratio 33 0.74
MdfA
Scattering 36 0.20
P2X4 Ratio 42 0.80
F330 28 0.84
BR
Scattering 28 0.73

Coefficients approaching zero show no correlation between variables while those
approaching 1 indicate a positive correlation (Y values increase as the X values increase).



Discussion

Implications for sample optimization

Analyse stability and solubility of IMPs by diluting them from their initial
solubilization condition into different detergents

Identify groups of detergents with characteristic stabilization and destabilization
effects for selected targets

Fos-choline and PEG family detergents may lead to membrane protein
destabilization and unfolding

Finding conditions that are suitable for downstream handling of membrane
proteins during purification



Absorption Spectroscopy

Shine light through a sample and measure the proportion absorbed
as a function of wavelength.

Absorbance A = log(I,/T)
Beer-Lambert law: wavelength
A(A) =¢e(M)lc A

g: extinction coefficient ”’ g
Sample
[0 conc. ]

<!

The longer the path or the more concentrated the sample, the higher
the absorbance



Circular Dichroism

* CD measures the difference between the absorption of left and right
handed circularly-polarized light. polarized light:

ahsorption

dichroism

>

Right and Left Hand

wavelendth (nm) wavelength (nm) circularly polarised ¢ CD signal
light _
lg Qi R}. "
5 Preferential
Photon Opti absorption of
ptically Richt Hand
B : ight Han
o g;;:;fe polarisation

» This is measured as a function of wavelength, & the difference is always very
small (<<1/10000 of total). After passing through the sample, the L & R beams
have different amplitudes & the combination of the two unequal beams gives
elliptically polarized light.Hence, CD measures the ellipicity of the transmitted
light (the light that remains that is not absorbed):



Circular Dichroism

Plane Polarized Light

Direction of propagation

A
Quarter-Wave Plate at 45° to the optic axis,
then the light is divided into two equal
 / electric field components. One of these is
retarded by a quarter wavelength by the
E vectors plate (a net phase shift of ©/2). This
produces circularly polarized light.

Polarizer Direction of propagation



Circular Dichroism

*The peptide bond 1s inherently asymmetric & is always optically active.

« Any optical activity from side-chain chromophores 1s induced & results
from interactions with asymmetrical neighbouring groups.




Units

Molar Ellipticity

0)=L deg cm*dmol”
Nl _ o.M 2 -1
_9_ —10C.1 deg cm-dmol e 00 )_HOO(_AL*A_R)_
e Differential absorbance i Cl
_ — (0] a1
Ae=¢€, —€p =550 M cm

« [B] and A€ can also be expressed per residue and this is useful for
compdring systems of differing size

* 0; signal millidegree, c; [sample] dmol L, C; [sample] mg mL™, |,
pathlength cm; M; molecular weight

[6] MRW =6/(10 x cr x |) Cr (mean residue molar concentration)=n xc,

where n is the number of peptide bonds in the
protein
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Far UV CD Spectra

Total Signal for a Protein Depends on 1ts
2ndary Structure =

—— chymotrypsin (~all )

—— lysozyme (mixed o & B) ——__|

triosephosphate isomerase
(mostly o some )

— myoglobin (all a)

1 L 1 L 1 . I L 1
180 200 220 240 2E0
Wa velength (nm]

* Notice the progressive change in 0,,, as the
amount of helix increases from chymotrypsin to
myoglobin



A real example

Assembling a puzzle...



Clathrin mediated endocytosis
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Robinson MS, Review, Traffic 2015 -Model of a Clathrin coated vesicle
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Functional organization of the central endocytic coat is not
known

Cargo and receptors <G
=3 2330

@ 3
o - <
< Clathrin

~
20-80 clathrin adaptors

Dynamin

adapted from Pollard et al., Cell Biology, 2nd ed., 2007

Clathrin-mediated endocytosis poster on Amazon model of clathrin-coated vesicle by Prof. Margaret Robinson,
(by Stocktrek Images) University of Cambridge



Mapping of the endocytic coat requires a high spatiotemporal resolution

Methods, we currently use:

immunoelectron microscopy
Idrissi et al, 2008, 2012

correlative light-electron microscopy
Kukulski et al, 2012
Avinoam et al, 2015
Sochacki et al, 2017

Deep yeast endocytic profile live-cell imaging of centroid positions
Buser & Drubin, Microsc. Picco et al. 2015. 2018
H )

Microanal., 2013
single molecule localization

microscopy
Mund et al, 2018



Mapping of the endocytic coat requires a high spatiotemporal resolution

Method, we can use:

FRET-based protein-protein
proximity mapping

Forster resonance energy transfer (FRET)
occurs between fluorophores separated
by less then ~ 10 nm

approx. 20 coat-associated proteins
(each in dozens of copies in semi-

Deep yeast endocytic profile eaquimolar ratio) localize
Buser & Drubin, Microsc. ) 9 N ) s .
Microanal., 2013 in a “FRET accessible” area with
a very good signal/noise ratio!
FRET efficiency
100 +—m— E [%]
80 - ~ R}
E= (R06+R6)

60 1
5
40 1

20 1

0 v T T T
0 20 40 0 60 80 100

Distance R [A]




Superresolution microscopy on the endocytic site
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ENTH and ANTH are membrane targeting domains

(Lipid Clamps) PIP2

amphitropic domains

| | 4

electrostatic Inducible helix-0 hydrophobic loops covalently
interactions - ' bound lipid
0.1 DLS, + : ; T 100
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< ©
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Protein-Protein interaction

Do these proteins form a complex?



Screening

throughput
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Accuracy/quality

Small molecules
Binding

X-tal conditions
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Screening for binding

Analytical centrifugation - %L
Fluorescence anisotropy - competition % %L %

Stability measurements/Mass-action law

.
OH
NH, 5

|
WOH
NH,

—

Temperature

DSC

Differential Scanning Fluorimetry
(DSF, ThermoFluor, SYPRO Orange, qPCR)



Summary

* Balance between quality and throughput

» Established system
« Soluble
* Stable
* Characterised

* Reliable protein production (>1g)

* Model ligand

* Source of potential ligands to test

« Ways of designing next diversity set



An Hexameric and an Octameric AENTH

AENTHy AENTHYy
hexamer octamer
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Expected Average: 365 KDa



Question

-Are there any structural differences could explain the divergence for the
biological functions of HIP1R/Sla2 vs CALM proteins?

The ANTH domains: Hip1R vs CALM

A

azoa &

De Craene et al. BMC Genomics 2012, 13:297. http://www.biomedcentral.com/1471-2164/13/297



Structural Differences between Calm and ANTH subfamilies
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Garcia-Alai et al., Nature Commun, 2018 vol (1) pp. 328

RNA Chaetomium
thermophilum:
Peer Bork
Thomas Bock

ANTH from Chaetomium
Thermophilum (1.8 A)



Structural Differences between Calm and ANTH subfamilies

Sla2(1-360)
wild-type

NHL

dYL

R29A

Sla2 ANTH
wild-type

NHL

-Growth defects of Sla2 AYL and ANHL mutant strains. Ten-fold serial dilutions of sla2D strains expressing
indicated proteins were incubated on SC-Ura plates for 1.5-2 days at 30C, 35C, and 37C.



Crystal structure of the ENTH2/PIP2 complex reveals an
allosteric-binding mechanism

d Empty PIP2
binding Unfolded HO

Unfolded HO Empty PIP2
binding
pocket



Epsin forms assemblies through phospholipid interfaces

Crystal structure of Epsin ENTH bound to PIP2

E F
Head view Side view
Empty PIP2
binding Unfolded HO

Unfolded HO Empty PIP2
binding
pocket

Surface presentation of the ENTH/PIP2 complex

showing a tetrameric assembly

*  Two building blocks in cyan/blue and
magenta/violet

* Tyr 16, Arg 24, Arg 62 and His 72 form the empty
PIP2 binding pocket



Cooperative binding of PIP2 to the ENTH domain of epsin
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Relative peak intensities were used to determine the ratio
of lipid-bound to non-bound
Cooperativity of the two binding sites was assessed by

reviewing the mathematical relation:

ka1 X kg2

Dl = ———
ka1 + ka2

Kpo = kg1 + ka2



Complexes with ENTH1 and ENTHZ2

ENTH1
41+ 40+

A111Da  ENTH2

42+ 39+

43+ 38+

37+ ENTH1/2 + ANTH
433.5 +£0.07 kDa

ENTH2 + ANTH
434.0 £ 0.07 kDa

ENTH1 + ANTH
433.0 + 0.04 kDa

10000 11000 ' 12000 13000 m/z



PIP2 availability as the regulatory mechanism for AENTH assembly

ITC

DLS

kcal/mole of injectant

@)

Intensity Autocorrelation

Time (min)
-10 0O 10 20 30 40 50 60 70 80 S0 100110120

Kd=1342nM ]
+ 3.11 nM
IIIIIIIII
00 05 10 15 20
Molar Ratio

1I0 ﬂll) 10‘(!) I(I)‘ 1(‘)‘ 10
Time (us)

ycal/sec

% Mass

B

Time (min)
410 0 10 20 30 40 50 60 70 80 90 100110120
002 1T
0.004 I ATkl
0.02
004
006
008
0104
.........
-
-
1= n - . e
i-z- ...-l.l nE .
(=
= n
2]
;g [ ]
£
g
AT 71— T
0.0 05 10 15 20
Molar Ratio
100 :
35 KDa
80
. I
| 390 KDa
o 9KDa I | {400KDa
ALt
o1 :I"!. E‘E,J \ ;f i
o fA N S
-20 1
01 10 100

Radius (nM)

[PIP2]= 0 uM, blue; 80
uM, light-blue; 200 uM,
orange and 400 uM, red



Ordered assembly formation of fungal ENTH and Sla2 ANTH
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hENTH
hexamer

e

24+

The human ENTH core

- this could explain the epsin dependent Hip1R

recruitment observed in vivo...

| 22+

SAXS ab-initio model

- Is this ENTH core a precursor for further AENTH oligomerization?



The mechanism of assembly

Biophysics, Crystallography, SAXS and NMS
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PIP2 driven cross-species interaction of ENTH and ANTHSIa2 domains
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Question

- Is this complex evolutionary conserved as a common
feature crucial for the clathrin-dependent endocytic path,
or was it selected as a mechanism occurring only in
yeast?



The typical clathrin-coated pit-like punctate
localization
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The AENTH human complex

Monomenc proteins ENTH/PIP_/HITR complexes
©6+0 117 kDa
©6+2 189 kDa
©6+4 258 kDa
¢ 6+6 333 kDa
®6+7 372 kDa
e 7+7 391 kDa
¢8+8 451 kDa
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The human ENTH core

- this could explain the epsin dependent Hip1R
recruitment observed in vivo...

hENTH B
hexamer *

24+ 7
| 22+

SAXS ab-initio model

- Is this ENTH core a precursor for further AENTH oligomerization?
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human ENTH core is stable on its own
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The puzzle?

longitudinal section
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cryo-EM on GUVs with PIP2
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Far-UV CD spectra of ANTH and ENTH domains

Skruzny et al., Developmental Cell, 2015

wavelength (nm)

20 . 40 - 20 T
a b c
10 4 10 - 1
20
0+ - .
0 - — —
0+ —_ K E
g -10 °
© 20
£ 0 20 |-
-30
= -0 -40
ENTH H.s CALMHs | ~ HIP1R H.s
o a0 mo w0 o mo mm w0 mo a0 sl w0 o s s w0 a0 a0 a0 a0 mm o s 20 o a0 2
wavelength (nm) wavelength (nm) wavelength (nm)
20 T 20 T 20 T
d e f
o 1
of ———— on T
[ —_— —_—
a0k
(@] 20 |
8 10 -20 ®
S
-20 -40 -
-40
5 1wl 1
ENTH S.c YAP1802 S.c © SLA2 C.t
VAUZOD 21‘0 22‘0 2;0 2“‘0 2;0 26‘0 2;0 280 '5“200 21‘0 2;0 2:“0 2;0 2;0 2‘;0 2;0 280 200 21‘0 22‘0 25‘0 2;0 2;0 2‘60 27‘0 280
wavelength (nm) wavelength (nm) wavelength (nm)
T 40 T T
20 g 4
.l
g 20 |- 1 g
© o]
1S E
-40 | 4
-60 |- R -60 - -
"\HH\HH\HH\HH\‘C‘:AITM"‘-I\"S‘H ‘mH\HumH‘\H‘Hl‘F‘,.l‘R‘H“S\H“i
200 210 220 230 240 250 260 270 280 200 210 220 230 240 250 260 270 280

wavelength (nm)

Garcia-Alai et al., Nature Commun, 2018 vol (1) pp. 328



yENTH2 X
(3.8 A)

The ENTH core is conserved from yeast to humans

A

B

[, relative

1.5 mg/ml
0.7 mg/ml

—— FIT (hexamer)

SAXS
-The

human
ENTH core

in solution



Summary

 ENTH could adopt different oligomeric states when binding PIP2
Crystal structures & DLS

» We showed the structural differences between the CALM and Hip1R
subfamilies of ANTH domains CD

*  We show the EANTH complex occurs in yeast, thermophiles and
humans ITC & NMS
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