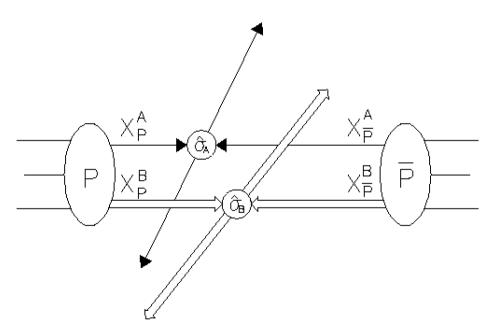
Double-Parton scattering in γ + 3 jet final states

- Reminder of CDF analysis
- First steps with Pythia 8.086
- CMSSW analysis code in CVS

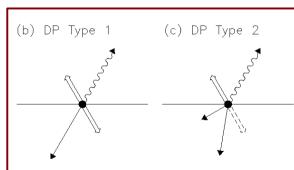
Florian Bechtel (U Hamburg) CMSHH Meeting Wednesday, July 18th 2007



Concept

- DPS two <u>hard</u> parton-parton interactions in one proton-proton collision
- Important background to di-boson (W⁺W⁻, etc.) and boson+jets production
- New research line within CMS inspired by CDF's "Photon + 3 jets"-measurement [see Phys. Rev. D56,3811(1997)]

schematic diagram:


two parton-parton interactions in one proton-proton collision

one p pbar collision:

(a) QCD (a) QCD —— pp collision

→ 1st scatter

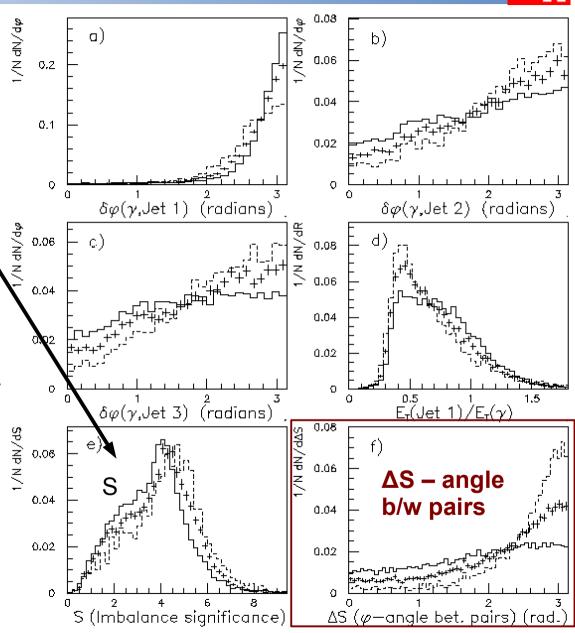
r____ unseen

Double-Parton scattering processes

two p pbar collisions:

CDF Measurement of DPS

Choose γ + jet and dijet pairs by minimizing

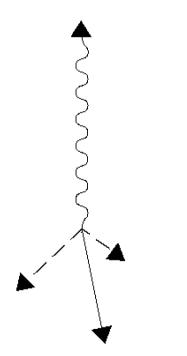

$$S = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|\vec{p}_T(\gamma, i)|}{\sqrt{p_T(\gamma) + p_T(i)}}\right)^2 + \left(\frac{|\vec{p}_T(j, k)|}{\sqrt{p_T(j) + p_T(k)}}\right)^2}$$

MIXDP model for Double Parton scattering:

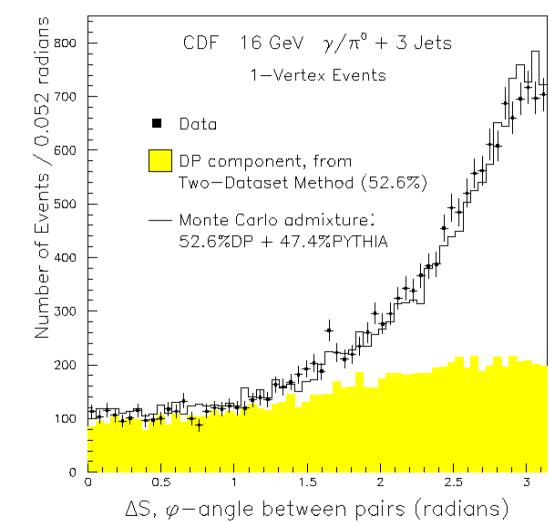
- Assumes two independent hard scatterings
- Obtained by mixing two CDF events (inclusive photon and minimum bias)
- $\rightarrow \gamma$ + jet incorporates underlying event contribution appropriate for single p pbar collisions

Plots compare shapes for

- 1-Vertex data (+)
- MIXDP prediction for Double Parton scattering (—)
- Pythia 5.702 prediction for single partonparton scattering (- -)


Azimuthal angle between pairs

ΔS - azimuthal angle between the P₊-vectors of the two best-balancing pairs


QCD
$$\gamma + 3$$
Jet

$$P_{T}(\gamma+Jet)$$

$$AS \sim \pi$$

$$A \subset Dijet$$

→ Data (■) described by admixture (—) of Double Parton and Single Parton scattering

New model in Pythia 8.086

- Pythia 8.086 allows a precise specification of a second hard process
 - Relevant section in Pythia 8.086 manual: https://twiki.cern.ch/twiki/pub/CMS/MBUEFlorianBechtelLog/pyManual2ndHardProcess.ps
- Limited set of prepackaged process collections for 2nd process
 - QCD $2 \rightarrow 2$
 - Photon + jet
 - Two prompt photons
 - Single γ/Z : q qbar $\rightarrow \gamma/Z^0$
 - Single W: q gbar → W^{+/-}
 - q qbar \rightarrow b bbar, gg \rightarrow b bbar ...beware of double-counting
- Selection rules
 - same selection rules for process properties and phase space cuts as first hard process
 - In particular: P_T^{min} -cut for $2 \rightarrow 2$ applied to both hard processes

Pythia 8.086 tests


```
| PPP Y Y TTTTT H H III A Welcome to the Lund Monte Carlo! | P P Y Y T H H I A A This is PYTHIA version 8.086 | PPP Y T HHHHHH I AAAAA Last date of change: 31 May 2007 | P Y T H H I A A Now is 13 Jul 2007 at 16:57:59
```

Parameter settings for Double Parton scattering in γ + 3-jet final states:

```
"HardQCD:all = on",
"SecondHard:generate = on",
"SecondHard:PhotonAndJet = on",
"PhaseSpace:mHatMin = 40.",
"PhaseSpace:pTHatMin = 20."
```

generated 1000 events without crashing

CMSSW interface to Pythia 8

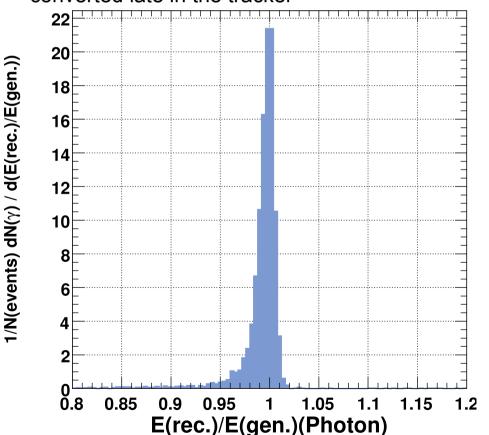
Pythia 8.086 not yet available in Genser repository

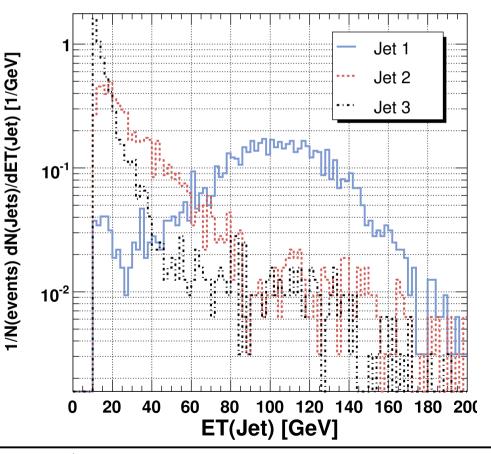
- Installation described in http://www.thep.lu.se/~torbjorn/pythiaaux/future.html
- Official example: main41.cc
- local installation in /rdata2/uhh-cms013/data/bechtel/Pythia8/pythia8086

CMSSW interface provided by Mikhail Kirsanov

- GeneratorInterface/Pythia8Interface
- Usage (i.e. setup environment for a specific installation area) described in https://twiki.cern.ch/twiki/bin/view/CMS/Pythia8Interface

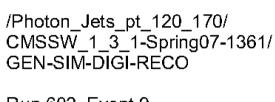
Production of test sample ongoing

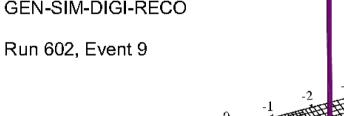

- Code development on γ + jet sample /Photon_Jets_pt_120_170/CMSSW_1_3_1-Spring07-1361/GEN-SIM-DIGI-RECO
- Analysis code available for CMSSW_1_4_3: UserCode/FlorianBechtel/GammaThreeJets/GTJAnalyzer

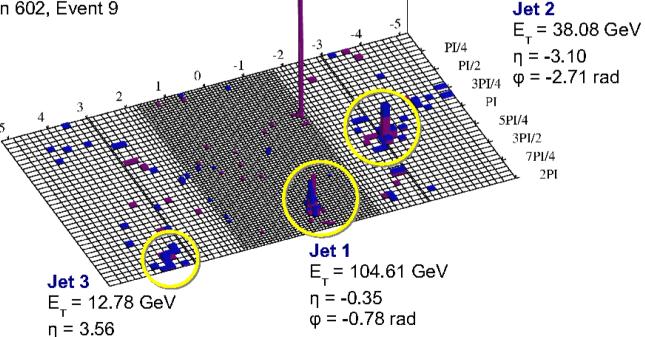

Selection cuts

- choose photon with largest Ε_τ
- \bullet E_T(γ) > 10 GeV
- R9(γ) = E(3x3 crystals)/E(Super-Cluster) > 0.95
 - effective in distinguishing photon conversions in the material of the tracker
 - large R9: photon candidate either did not convert or converted late in the tracker

- exactly one event vertex
- E_T(Jet) > 10 GeV
- $\Delta R(\gamma, Jet) > 0.8$
- → choose three jets with largest E₊
- midPointCone7CaloJets
- \bullet Jet 1 combined with γ


Pair selection


Choose γ + jet and dijet pairs by minimizing

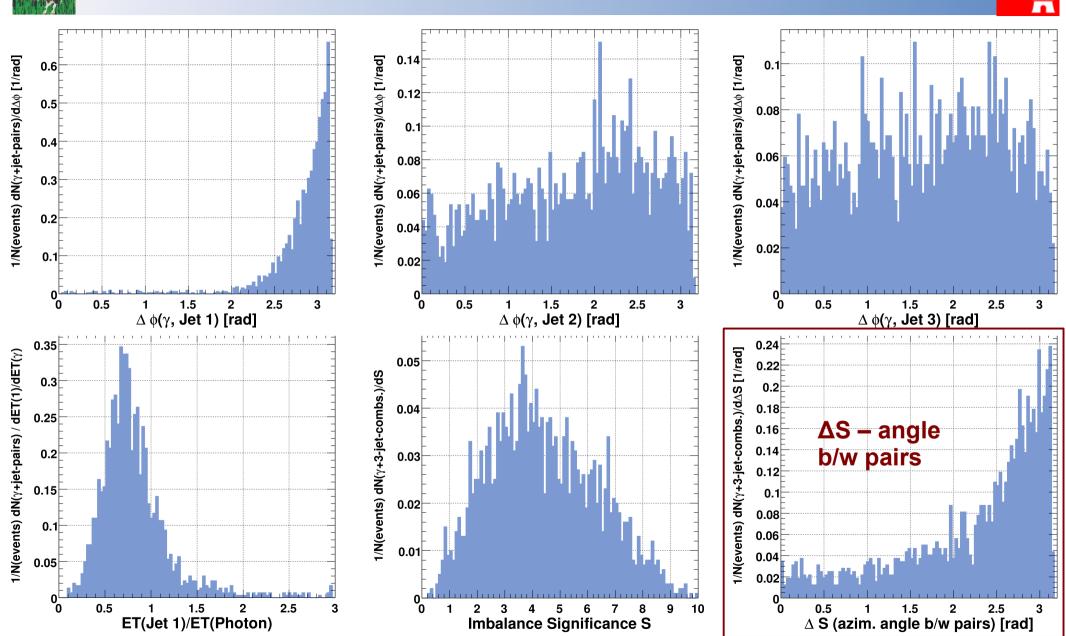

$$S = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|\vec{p}_T(\gamma, i)|}{\sqrt{p_T(\gamma) + p_T(i)}}\right)^2 + \left(\frac{|\vec{p}_T(j, k)|}{\sqrt{p_T(j) + p_T(k)}}\right)^2}$$

20 GeV

 $\phi = -0.38 \text{ rad}$

Photon

n = -1.62


 $\phi = 1.96 \text{ rad}$

 $E_{_{\rm T}}$ = 141.867 GeV

Code validation: Kinematic variables

What's next?

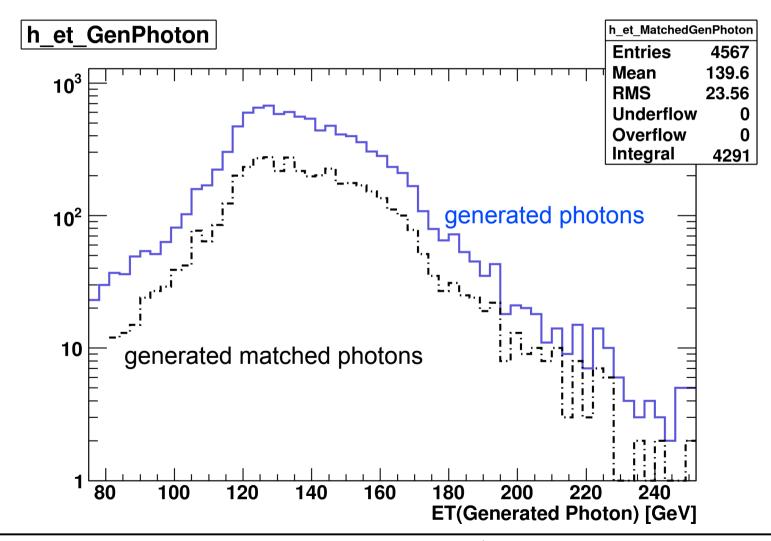
Produce test samples

- Single Parton scattering:
 - γ + jets (Pythia) and γ + n-jets (Alpgen) from official production
- Double Parton scattering:
 - Grid production: GEN files already quite large (probably not feasible to send them via input sandbox)
 - Batch farm: Access to local disk (/rdata2/uhhcms013/data/bechtel/Pythia8/pythia8086) needed...
 - Workgroup servers: Slow and/or tedious

Code development

 implement charged jets (i.e. jets from tracks → better azimuthal resolution, can go to lower P_T)

Backup



Photon reconstruction efficiency

in 10000 events 3879 good matched photons on average 1.6 photons with ET > 25 GeV on average 3.4 photons with R9 > 0.95

