Summerstudent Lectures 2019 Introduction to Photon Science

Rainer Gehrke PS-PS

rainer gehrke@desyde

Curring 19

Scientific Experiments

DESY Photon Science Annual Reports 2010 - 2018 (PDF)

http://photon-science.desy.de/research/scientific_media/desy_photon_science_annual_reports/

Hasylab Annual Reports 1998 - 2007 (Web Versions) and DESY Photon Science Annual Reports 2008 - 2009 (PDF) http://photon-science.desy.de/research/scientific_media/desy_photon_science_annual_reports/archive/

PETRA III Facilities

Scientific Experiments with photons at PETRA III

24 Undulator Beamlines About 2000 Scientists from about 400 Institutes about 4000 hours of user beamtime per year

Scattering and Diffraction

- Small Angle X-Ray Scattering
- Diffraction and Crystallography

Spectroscopy

- XUV Fluorescence Spectroscopy
- X-Ray Absorption Spectroscopy
- X-Ray Photoemission Spectroscopy
- Inelastic X-Ray Scattering

Imaging

- Microtomography
- X-Ray Micro Fluorescence

Physics, Chemistry, Biology, Medicine

(SAXS, USAXS, GISAXS, ASAXS) (General, Powders, Proteins, High Pressure, Surfaces)

(Nuclear Resonant Scattering)

Weak Signals e.g. High Collimation e.g. Small Samples Time resolved measurements Tunable wavelength Time Structure

Experiments concentrate on experiments with small focus primary beams ($\mu m, nm$)

PETRA III Facilities

	The second se	Surface Science (P01, P03, P08, P10)
P01:	Nuclear Resonant and inelastic scattering	Thin films, Wetting phenomena, Phase transitions
2.5 - 80 keV,	Resolution 1 eV to 1 meV, sub-micron spatial resolution	Materials Science (P01, P02, P04, P07, P09,)
P02.1:	High-Resolution Powder Diffraction	Catalysis Magnetism Superconductivity Metallic
60 keV,	Resolution	Classes Detteries
P02.2:	Microdiffraction under Extreme Conditions	Glasses, Batteries
25 - 60 keV,	high pressure, high/low temperatures	Soft Matter Research (P01, P03, P08, P09, P10)
P03:	X-ray scattering with micro-/nano-focus	Polymers, Colloids, Glass Transitions
9 – 23 keV		Earth Science (P01, P02, P08, P09)
P04:	Variable Polarization XUV-Beamline	High Pressure Research Geophysics Mineralogy
250 - 3000 eV	' High-Resolution Photoelectron Spectroscopy	Trace Flowert Analysis
P05:	Imaging Beamline	Trace Element Analysis
5- 50 keV	Micro- and Nanotomography	Life Science (P11, P12, P13, P14)
	Phase- and Absorption Contrast imaging,	Protein Structure, Drug Development
P06:	Hard X-ray Micro/Nanoprobe	
5 - 21 keV	Visualization with micro- to nanometer resolution using X-ray Fluorescence, absorption spectroscopy, diffraction	
	Coherent diffraction imaging, Ptychography	
P07:	High Energy Materials Science	
30 - 200 keV,	Microfocus	
P08:	High Resolution Diffraction, Small angle Scattering, Reflectivity	
5 - 29 keV,	Microtocus	
P09:	Resonant Scattering and Diffraction, XMCD	
2.7 - 50 keV		
P10:	Coherence Applications Beamline	
5 - 25 keV	Photon Correlation Spectroscopy, Coherent diffractive imaging of nanostructures, Rheo-SAXS	
P11:	Bio-Imaging and diffraction	
5 - 30 keV,	Micro/Nanobeam, Biological Samples and microcrystals	
P12:	Small Angle Scattering at biological samples (proteins) in solution	
P13/P14:	Macromolecular CrystallographY	

Scientific Experiments Scattering & Diffraction

Basics of an Elastic Scattering Experiment

Protein Crystallography (PX)

Tiny samples Huge unit cells Light elements Sensitive to radiation damage High resolution necessary narrow energy band high degree of collimation

High brilliance required

Protein Crystallography (PX)

Protein crystal: Yeast Proteasome (50000 Atoms/unit cell)

Resolution 0.09 nm, mean position error 0.001 nm Even Position of Hydrogene Atoms resolved!

Protein Crystallography (PX)

Resolution 0.09 nm, mean position error 0.001 nm Even Position of Hydrogene Atoms resolved!

Revealing Structure and Dynamics of Ribosome

Ada Yonath:

- Head of the MPG-work group "Structure of the Ribosome" at DESY, 1986 - 2004
- Nobelprize Chemistry 2009

With T. Steitz and V. Ramakrishna

Layout of a SAXS Instrument

First Experiments Using Synchrotron Radiation (1964 – 1975)

• 1970: Small angle X-ray scattering on muscle fibres Rosenbaum, Holmes, Witz, Nature, 230(1971)435 Detector Sample Muscle Tandon 1970 A в Bone **Muscle Fibre Fibrils** Zellkerr 1996 globuläre Titin -Aktin domane Sarkomer Titin Myosin The state of the s

elastische Titinregion

DESY

SAXS/WAXS at lamellar polymer systems

Time resolved in-situ SAXS: Recrystallisation of PET

Annealing of PET, previously crystallised at $T_1=130^{\circ}C$, recrystallisation at $T_2=230^{\circ}C$

Scattering of Anisotropically Oriented materials

Deformation of an SBS-Triblock Copolymer (Thermoplastic Elastomer)

Grazing Incidence Small Angle Scattering (GISAXS)

In-Situ Sputtering Equipment at PETRA III (P03)

5

VDD

VDD

In-Situ Real-Time GISAXS Experiment

In-Situ Au sputtering on PS

The System:

δ(Au) ≈ (8 ± 1) nm δ(PS) ≈ (91 ± 2) nm δ(SiOx) ≈ (6 ± 2) nm

spin casted polystyrene thin film ($M_w = 270 \text{ kDa}$) on acid cleaned silicon with correlated roughness

Nanostructural evolution *during* fabrication observed with subpicometer resolution

- wavelength = 0.1 nm
- D_{SD} = 1.8 m
- PILATUS 300K: Frame rate = 10 fps
- Deposition time: 1013 s
- Deposition rate: 0.0082 nm/s

Microfluidics: Flow Assisted Assembly of Nanocellulose

Orientation of cellulose nano-fibrils by means of hydrodynamic focusing and pH reduction

Schematic illustration of the microfluidic setup

Nanocellulose (NC): rods of crystalline cellulose, length= 100 – 1000 nm, width= 3 – 10 nm

DES

Coherent Diffraction Imaging of a Mimivirus

Samples: Uppsala University and CNRS, Aix-Marseille Université FEL experiments: CFEL @ DESY, Uppsala, SLAC, MPMI

Chapman, Hajdu et al.

X-ray photon correlation spectroscopy (XPCS)

DES

Diffraction of coherent light from a disordered sample leads to a 'grainy' diffraction pattern (speckles)

Simulation of Brownian motion

Real space

Diffraction pattern

Scientific Experiments Spectroscopy

Basics of X-ray Spectroscopy

X-Ray Absorption Spectroscopy (XAS)

X-Ray Absorption Spectroscopy (EXAFS)

Instrumental development: QEXAFS (piezo scanning) Study of solid state transformations in catalysis

Activation of a CuO/ZnO/Al₂O₃ catalyst for methanol synthesis:

- In-situ reduction in H₂ gas flow at elevated temperatures
- 50 ms time resolution
- Detailed analysis of transient chemistry (here Cu₂O)
- Experiment done at BW1

Large volume press of GFZ (Geo Research Center Potsdam) at DESY

1750t press for in situ studies of large sample volumes. Maximum pressure: ~ 25 GPa Temperature: > 2000 K

Study of material under the conditions of the earths lower mantle.

Speed of sound of Fe under pressure (19 to 110 GPa)

Angular Resolved Photoelectron Spectroscopy (ARPES)

Scientific Experiments Imaging

3D imaging with confocal X-ray Microfluorescence

Micro X-ray Fluorescence on Daphnia Magna (water flea)

Raster Scanning X-ray Fluorescence

Vincent van Gogh: Meadow with flowers

Typical fluorescence spectrum in a single pixel

Raster scanning along 90000 pixels with 0.5 mm resolution

Wood - Determination of the microfibril angle (Microfocus SAXS and WAXS)

DESI

Helical arrangement of cellulose fibers in the wood cell wall (Scanning Microfocus SAXS)

Experiments at FELs

Coulomb Explosion

"Coulomb Explosion" of a molecule in the strong electric field of an FEL X-ray pulse

The Ultimate Goal: Recording the "Molecular Movie"

DESY

Snapshots for different times after excitation (pump-probe spectroscopy)

→ "motion picture" of the reaction dynamics (in contrast to reaction kinetics).

Serial Femtosecond Crystallography SFX

Fast liquid jet for sample delivery

Serial Femtosecond Crystallography SFX

"Diffraction before

(accumulated) orientation classes

- **1.** Acquisition of scattering patterns
- 2. Classification and accumulation
- 3. Distribution in 3D reciprocal space
- 4. Reconstruction of structure in real space

Intensity in reciprocal space

Electron density in real space

SFX Data Processing Stages

Valerio Mariani

Anton Barty, Oleksandr Yefanov

Andrew Morgan

Photoelectric Effect at Ultrahigh Intensities (FLASH, 13.5 nm]

13.5 nm ≡ 91.8 eV

Dramatic changes in the ion charge state at high power densities

One atom has to absorb more then 50 photons!

Phys. Rev. Let. 99, 213002 (2007)

Pump Probe Experiment

Correlation between actual and initial pattern quantifies progressive loss of mesoscale order (explosion speed about 5000 m·s⁻¹)

A. Barty et. al., Nature Photonics volume 2, pages 415-419 (2008)

Photon Science Facilities on DESY Campus

CXNS = Center for X-Ray and Nano Science
CFEL = Center for Free Electron Laser Science (DESY, MPI, UniHH)
CHyN = Center for Hybrid Nanostructures

CSSB = Centre for Structural Systems Biology **MPSD** = Max-Planck Inst. For Structure and Dynamics of Matter