Complon edge Measurement

Borysova Maryna (KINR) 18/06/19 LUXE fortnightly meeting

LUXE

ξ vs E FROM MC

Peak $\xi = 0.26 (0.01 \text{ J})$ 10000 bunches

For 800 nm laser, 17.5 GeV electrons:

Compton edge ~ 5.14 GeV

the first kinematic edge is shifted

approximately by 200 MeV

schema of the experiment

Geant4 simulation for the W wire converter

1000 photons from ~ 160 BX W thickness 10 um

etle from ceanth

1000 photons from ~ 160
BXW thickness 10 um
e+/e- position on a
distance of 3.5 m from the
magnet (1T):

Geant4 simulation for the Ni wire converter spectra

~63000 photons from 10000 BX Ni thickness 10 um

dw. um	Ni, e-
10	148
1	7

et/e-spectra for 1 & 5 um wires

5000 photons from ~ 800 BX

dw, um	et	e-	Ni, e-
10	2740	2758	148
5	668	681	
1	23	25	7

METHOD of photon spectrum restoration

$$f(Ee) = \int \sigma(E\gamma, Ee)g(E\gamma)dE\gamma$$

The single-particle spectrum obtained in GEANT4 is compared to a model spectrum calculated by convolving the trial photon spectrum with the Bethe-Heitler cross section

 $\int \sigma(E\gamma, Ee)g(E\gamma, p1, p2)dE\gamma$

fitting allows finding the **the kinematic edges** quite well

What's done & What's next

- * @ MC for HICS + trident with primary electrons: well visible first and 2nd (!) kinematic edges for the lowest ξ =0.26 (corresponds to 0.01 J) for the Ni target of ~10 µm
- * Using wire targets of Ni, W w/ the thickness ~1-10 μ m number of pairs could be varied 10-10⁴. E.g. for Ni 10 μ m, 10m from IP Number of pairs ~150 (ξ =0.26)
- Move to detailed geometry in simulations w/ detector implementation (tracker +calorimeter)
- Study background
- Perform the simulation for 14 GeV

Back up

Bethe-Heitler pair spectrum

The classical Bethe-Heitler formula (H.Bethe, W.Heitler, Proc.Roy.Soc.A146 (34)83)

$$\Phi \left(\mathbf{E}_{0} \right) d\mathbf{E}_{0} = \frac{\mathbf{Z}^{2}}{137} \left(\frac{e^{2}}{mc^{2}} \right)^{2} 4 \frac{\mathbf{E}_{0+}{}^{2}\mathbf{E}_{+}{}^{2} + \frac{2}{3}\mathbf{E}_{0}\mathbf{E}_{+}}{(h\nu)^{3}} d\mathbf{E}_{0} \left(\log \frac{2\mathbf{E}_{0}\mathbf{E}_{+}}{h\nu mc^{2}} - \frac{1}{2} \right).$$

energies involved are large compared with mc²

Corrected Bethe-Heitler cross-section from GEANT4 is currently used:

Geant4 simulation for the Ni wire converter ~63000 BX Ni thickness 10 um

e+/e- position on a distance of 3.5 m from the magnet:

ξ vs Ey FROM MC

