Introduction to Accelerator Physics

Part 3

Pedro Castro / Accelerator Physics Group (MPY) Hamburg, 23rd July 2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Maxwell's equations	set of solutions with $B_z = 0$ (that is, \vec{B} is transverse)				
(differential formulation in SI units)	$\int E_z = E_0 J_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$				
$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$	$E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 \underline{J'_m} \left(x_{mn} \frac{r}{R} \right) \cos m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$				
$\vec{\nabla} \cdot \vec{B} = 0$	$\begin{cases} E_{\theta} = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t} \end{cases}$				
$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$B_z = 0$				
$\vec{\nabla} \times \vec{B} = \mu_0 \vec{I} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial \vec{E}}$	$B_r = -j\omega \frac{mR^2}{x_{mn}^2 rc^2} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$				
	$B_{\theta} = -j\omega \frac{R}{x_{mn}c^2} E_0 \underline{J'_m} \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$				
+ boundary conditions	indices:				
I : cavity landth	$m = 0,1,2,$: number of full period variations in θ of the fields				
	$n=$ 1,2, : number of zeros of the axial field component in $ec{r}$				
	$p = 0,1,2, \dots$: number of half period variations in z of the fields				
J_m : Bessel's functions	x_{mn} : n-th root of J_m (that is, $J_m(x_{mn}) = 0$)				
J'_m : derivative of the Bessel	's functions				
angular frequency : $\omega = c \left \left(\frac{x_{mn}}{R} \right)^2 + \left(\frac{p\pi}{l} \right)^2 \right $					
DESY. Introduction to Accelerator Physics Pedro Castro, 23rd July 2019 Page 16					

Maxwell's equations	set of solutions with $B_z = 0$ (that is, \vec{B} is transverse)					
(differential formulation in SI units)	$E_z = E_0 J_m \left(\frac{x_{mn}}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$					
$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$	$E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 J'_m \left(\frac{x_{mn}}{R}\right) \cos m\theta \sin\left(\frac{p\pi}{l}z\right) e^{j\omega t}$					
$\vec{\nabla} \cdot \vec{B} = 0$	$\int E_{\theta} = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(\underline{x_{mn}} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$					
$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$B_z = 0$ mP^2 $mT = 0$					
$\vec{\nabla} \times \vec{B} = \mu_0 \vec{l} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial \vec{L}}$	$B_r = -j\omega \frac{m\pi}{x_{mn}^2 r c^2} E_0 J_m \left(\underline{x_{mn}} \frac{r}{R} \right) \sin m\theta \cos \left(\frac{\rho \pi}{l} z \right) e^{j\omega t}$					
	$B_{\theta} = -j\omega \frac{R}{x_{mn}c^2} E_0 J'_m \left(\underline{x_{mn}} \frac{r}{R}\right) \cos m\theta \cos\left(\frac{p\pi}{l}z\right) e^{j\omega t}$					
+ boundary conditions	indices:					
R : cavity radius	$m = 0,1,2,$: number of full period variations in θ of the fields					
<i>l</i> : cavity length	$n=$ 1,2, : number of zeros of the axial field component in \vec{r}					
p = 0,1,2,: number of half period variations in z of the fields						
J_m : Bessel's functions	x_{mn} : n-th root of J_m (that is, $J_m(x_{mn}) = 0$)					
J'_m : derivative of the Bessel	's functions					
angular frequency : $\omega = c \left[\left(\frac{\lambda_{mn}}{R} \right)^2 + \left(\frac{\mu R}{l} \right)^2 \right]$						
DESY. Introduction to Accelerator Physics Pedro Castro, 23rd July 2019 Page 18						

Maxwell's equations	set of solutions with $B_z = 0$ (that is, \vec{B} is transverse)			
(differential formulation in SI units)	$\int E_z = E_0 J_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$			
$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$	$E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$			
$\vec{\nabla} \cdot \vec{B} = 0$	$\begin{cases} E_{\theta} = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t} \end{cases}$			
$\vec{\nabla} \times \vec{E} = -\frac{\partial B}{\partial t}$	$B_z = 0$ P^2			
$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$	$B_r = -j\omega \frac{mR^2}{x_{mn}^2 rc^2} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$ $B_r = -j\omega \frac{R}{x_{mn}^2 rc^2} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$			
+ boundary conditions	$\left(D_{\theta}^{2} - J_{\theta}^{2} \frac{1}{x_{mn}} c^{2} D_{\theta}^{2} m \left(x_{mn} \frac{1}{R} \right) \cos m \cos \left(\frac{1}{l} 2 \right) e^{j} \right)$			
<i>R</i> : cavity radius	indices: $m = 0,1,2, \dots$: number of full period variations in θ of the fields			
l : cavity length	$n=$ 1,2, : number of zeros of the axial field component in $ec{r}$			
	p = 0,1,2,: number of half period variations in z of the fields			
J_m : Bessel's functions	x_{mn} : n-th root of J_m (that is, $J_m(x_{mn}) = 0$)			
J'_m : derivative of the Bessel	's functions			
	angular frequency : $\omega = c \left \left(\frac{x_{mn}}{R} \right)^2 + \left(\frac{p\pi}{l} \right)^2 \right $			
DESY. Introduction to Accelerator Physics Pedro Castro, 23rd July 2019				

Maxwell's equations	set of solutions with $B_z = 0$ (that is, \vec{B} is transverse)
(differential formulation in SI units)	$\int E_z = \overline{E_0 J_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right)} e^{j\omega t}$
$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$	$E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
$\vec{\nabla} \cdot \vec{B} = 0$	$\int E_{\theta} = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
$ec{ abla} imes ec{E} = -rac{\partial ec{B}}{\partial t}$	$B_z = 0$ $mR^2 \qquad (r_z) \qquad (n\pi_z)$
$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$	$B_r = -\underline{j\omega} \frac{1}{x_{mn}^2 r c^2} E_0 J_m \left(x_{mn} \frac{1}{R} \right) \sin m\theta \cos \left(\frac{p}{l} z \right) e^{j\omega t}$
	$B_{\theta} = -j\omega \frac{R}{x_{mn}c^2} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
+ boundary conditions	indices:
R : cavity radius	$m = 0,1,2,$: number of full period variations in θ of the fields
l : cavity length	$n = 1,2,$: number of zeros of the axial field component in \vec{r}
	$p = 0,1,2, \dots$: number of half period variations in z of the fields
J_m : Bessel's functions	x_{mn} : n-th root of J_m (that is, $J_m(x_{mn}) = 0$)
J'_m : derivative of the Bessel	's functions angular frequency: $\omega = c \left[\left(\frac{x_{mn}}{R} \right)^2 + \left(\frac{p\pi}{l} \right)^2 \right]$
DESY. Introduction to Accelerator Physics Ped	ro Castro, 23rd July 2019 Page 20

18

Thern	nal conductivity			
		$[W m^{-1} K^{-1}]$		
	water	0.56 – 0.61		
	copper (at 20 °C)	385 – 401		
	helium II	> 10 ⁵		
DESY. Introduction to Accelerator Physics Pedro Castro, 23rd July 2019		Page 53		

1) Why this shape?to reduce/avoid mul	ltipacting
2) How to feed \vec{E} in?	
3)	
4)	
DESY. Introduction to Accelerator Physics Pedro Castro, 23rd July 2019	Page 56

