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Factorisation Evolution

The parton model

I describe deep inelastic scattering, Drell-Yan process, etc.

• fast-moving hadron
≈ set of free partons (q, q̄, g) with low transverse momenta

• physical cross section
= cross section for partonic process (γ∗q → q, qq̄ → γ∗)
× parton densities

Deep inelastic scattering (DIS): `p→ `X Drell-Yan: pp→ `+`−X

Nobel prize 1990 for

Friedman, Kendall, Taylor
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Factorisation Evolution

The parton model

I describe deep inelastic scattering, Drell-Yan process, etc.

• fast-moving hadron
≈ set of free partons (q, q̄, g) with low transverse momenta

• physical cross section
= cross section for partonic process (γ∗q → q, qq̄ → γ∗)
× parton densities

Factorisation

I implement and correct parton-model ideas in QCD

• conditions and limitations of validity
kinematics, processes, observables

• corrections: partons interact
αs small at large scales  perturbation theory

• define parton densities in field theory
derive their general properties
make contact with non-perturbative methods
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Factorisation Evolution

Factorisation: physics idea and technical implementation
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I idea: separation of physics at different scales

• high scales: quark-gluon interactions
 compute in perturbation theory

• low scale: proton → quarks, antiquarks, gluons
 parton densities

I requires hard momentum scale in process
large photon virtuality Q2 = −q2 in DIS
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Factorisation Evolution

Factorisation: physics idea and technical implementation

H

A

k

p

q

I implementation: separate process into

• “hard” subgraph H with particles far off-shell
compute in perturbation theory

• “collinear” subgraph A with particles moving along proton
turn into definition of parton density
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Factorisation Evolution

Collinear expansion

I graph gives
∫
d4kH(k)A(k); simplify further

H

A

k

p

q

I light-cone coordinates  blackboard
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Factorisation Evolution

Collinear expansion

I graph gives
∫
d4kH(k)A(k); simplify further

H
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q

I in hard graph neglect small components of external lines
 Taylor expansion

H(k+, k−, kT ) = H(k+, 0, 0) + corrections

 loop integration greatly simplifies:∫
d4k H(k)A(k) ≈

∫
dk+ H(k+, 0, 0)

∫
dk−d2kT A(k+, k−, kT )

I in hard scattering treat incoming/outgoing partons as
exactly collinear (kT = 0) and on-shell (k− = 0)

I in collin. matrix element integrate over kT and virtuality
 collinear (or kT integrated) parton densities

only depend on k+ = xp+

further subtleties related with spin of partons, not discussed here
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Factorisation Evolution

Definition of parton distributions

I matrix elements of quark/gluon operators

H

A

k

p

q

fq(x) =

∫
dz−

2π
eixp

+z− 〈p∣∣ψ̄(0) 1
2
γ+ψ(z)

∣∣p〉∣∣∣
z+=0, zT =0

ψ(z) = quark field operator: annihilates quark

ψ̄(0) = conjugate field operator: creates quark

1
2
γ+ sums over quark spin∫
dz−

2π
eixp

+z− projects on quarks with k+ = xp+

I analogous definitions for polarised quarks, antiquarks, gluons

I analysis of factorisation used Feynman graphs
but here provide non-perturbative definition

further subtleties related with choice of gauge, not discussed here
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Factorisation Evolution

Factorisation for pp collisions

I example: Drell-Yan process pp→ γ∗ +X → µ+µ− +X
where X = any number of hadrons

I one parton distribution for each proton × hard scattering
 deceptively simple physical picture
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Factorisation Evolution

Factorisation for pp collisions

I example: Drell-Yan process pp→ γ∗ +X → µ+µ− +X
where X = any number of hadrons

I one parton distribution for each proton × hard scattering
 deceptively simple physical picture

I “spectator” interactions produce additional particles
which are also part of unobserved system X (“underlying event”)

I need not calculate this thanks to unitarity
as long as cross section/observable sufficiently inclusive

I but must calculate/model if want more detail on the final state
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Factorisation Evolution

More complicated final states

I production of W,Z or other colourless particle (Higgs, etc)
same treatment as Drell-Yan

I jet production in ep or pp: hard scale provided by pT

I heavy quark production: hard scale is mc, mb, mt

Importance of factorisation concept

I describe processes for study of electroweak and BSM physics, e.g.

• W mass measurement
• determination of Higgs boson properties
• signal and background in new physics searches

I determine parton densities as a tool to make predictions
and to learn about proton structure

• requires many processes to disentangle quark flavors and gluons
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Factorisation Evolution

A closer look at one-loop corrections

I example: DIS

I UV divergences removed by standard renormalisation

I soft divergences cancel in sum over graphs

I collinear div. do not cancel, have integrals∫
0

dk2T
k2T

what went wrong?
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Factorisation Evolution

I hard graph should not contain internal collinear lines
collinear graph should not contain hard lines

I must not double count  factorisation scale µ

k

I with cutoff: take kT > µ
1/µ ∼ transverse resolution

take kT < µ
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Factorisation Evolution

I hard graph should not contain internal collinear lines
collinear graph should not contain hard lines

I must not double count  factorisation scale µ

k

I with cutoff: take kT > µ
1/µ ∼ transverse resolution

I in dim. reg.:
subtract collinear divergence

take kT < µ

subtract ultraviolet div.
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Factorisation Evolution

The evolution equations

I DGLAP equations

d

d logµ2
f(x, µ) =

∫ 1

x

dx′

x′
P
( x
x′

)
f(x′, µ) =

(
P ⊗ f(µ)

)
(x)

I P = splitting functions x′

x

• have perturbative expansion

P (x) = αs(µ) P (0)(x) + α2
s(µ)P (1)(x) + α3

s(µ)P (2)(x) . . .

known to O(α3
s), in part to O(α4

s) Moch, Vermaseren, Vogt

• contains terms ∝ δ(1− x) from virtual corrections x′

x
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Factorisation Evolution

I quark and gluon densities mix under evolution:

I matrix evolution equation

d

d logµ2
fi(x, µ) =

∑
j=q,q̄,g

(
Pij ⊗ fj(µ)

)
(x) (i, j = q, q̄, g)

Pgq

PqgPqq

Pgg

more transitions
possible at higher
orders in αs

I parton content of proton depends on resolution scale µ
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Factorisation Evolution

Factorisation formula
I example: p+ p→ H +X

σ(p+ p→ H +X) =
∑

i,j=q,q̄,g

∫
dxi dxj fi(xi, µF ) fj(xj , µF )

× σ̂ij
(
xi, xj , αs(µR), µR, µF ,mH

)
+O

(
Λ2

m4
H

)

• σ̂ij = cross section for hard scattering i+ j → H +X

mH provides hard scale

• µR = renormalisation scale, µF = factorisation scale
may take different or equal

• µF dependence in C and in f cancels up to higher orders in αs

similar discussion as for µR dependence

• accuracy: αs expansion and power corrections O(Λ2/m2
H)

I can make σ and σ̂ differential in kinematic variables, e.g. pT of H
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Factorisation Evolution

Scale dependence

examples: rapidity distributions in Z/γ∗ and in Higgs production

Anastasiou, Dixon, Melnikov, Petriello, hep-ph/0312266 Anastasiou, Melnikov, Petriello, hep-ph/0501130

µF = µR = µ varied within factor 1/2 to 2
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Factorisation Evolution

LO, NLO, and higher

I instead of varying scale(s) may estimate higher orders by comparing
NnLO result with Nn−1LO

I caveat: comparison NLO vs. LO may not be representative for
situation at higher orders

often have especially large step from LO to NLO

I certain types of contribution may first appear at NLO
e.g. terms with gluon density g(x) in DIS, pp→ Z +X, etc.

I final state at LO may be too restrictive

e.g. in
dσ

dET1 dET2
for dijet production

ET1

ET2

ET1

ET2
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Factorisation Evolution

Just appeared: Drell-Yan at N3LO

F. Dulat, talk given at QCD@LHC, 19 July 2019
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Factorisation Evolution

Summary of Part 3

I implements ideas of parton model in QCD

• perturbative corrections (NLO, NNLO, . . . )
• field theoretical def. of parton densities
 bridge to non-perturbative QCD

I valid for sufficiently inclusive observables

and up to power corrections in Λ/Q or (Λ/Q)2

which are in general not calculable

I must in a consistent way

• remove collinear kinematic region in hard scattering
• remove hard kinematic region in parton densities
↔ UV renormalisation

procedure introduces factorisation scale µF

• separates “collinear” from “hard”, “object” from “probe”
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