QCD for Collider Physics Part 3

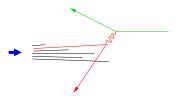
M. Diehl

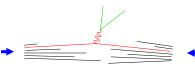
Deutsches Elektronen-Synchroton DESY

DESY Summer Student Programme 2019, Hamburg

The parton model

- describe deep inelastic scattering, Drell-Yan process, etc.
 - fast-moving hadron pprox set of free partons (q, \bar{q}, g) with low transverse momenta
 - physical cross section
 - = cross section for partonic process $(\gamma^* q \to q, q \bar{q} \to \gamma^*)$ × parton densities





Deep inelastic scattering (DIS): $\ell p \to \ell X$

Drell-Yan: $pp \to \ell^+\ell^- X$

Nobel prize 1990 for Friedman, Kendall, Taylor

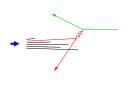
The parton model

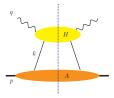
- describe deep inelastic scattering, Drell-Yan process, etc.
 - fast-moving hadron pprox set of free partons (q, \bar{q}, g) with low transverse momenta
 - physical cross section
 - = cross section for partonic process $(\gamma^* q \to q, q\bar{q} \to \gamma^*)$ × parton densities

Factorisation

- ▶ implement and correct parton-model ideas in QCD
 - conditions and limitations of validity kinematics, processes, observables
 - corrections: partons interact α_s small at large scales \leadsto perturbation theory
 - define parton densities in field theory derive their general properties make contact with non-perturbative methods

Factorisation: physics idea and technical implementation

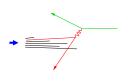


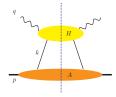


- ▶ idea: separation of physics at different scales

 - low scale: proton → quarks, antiquarks, gluons
 → parton densities
- requires hard momentum scale in process large photon virtuality $Q^2 = -q^2$ in DIS

Factorisation: physics idea and technical implementation





- implementation: separate process into
 - "hard" subgraph H with particles far off-shell compute in perturbation theory
 - ullet "collinear" subgraph A with particles moving along proton turn into definition of parton density

Collinear expansion

- \blacktriangleright graph gives $\int d^4k\, H(k) A(k)$; simplify further
- ▶ light-cone coordinates ~→ blackboard

Collinear expansion

- graph gives $\int d^4k \, H(k) A(k)$; simplify further

$$H(k^+, k^-, k_T) = H(k^+, 0, 0) +$$
corrections

→ loop integration greatly simplifies:

$$\int d^4k \ H(k) \ A(k) \approx \int dk^+ \ H(k^+, 0, 0) \ \int dk^- d^2k_T \ A(k^+, k^-, k_T)$$

- in hard scattering treat incoming/outgoing partons as exactly collinear $(k_T = 0)$ and on-shell $(k^- = 0)$
- in collin. matrix element integrate over k_T and virtuality
 - \sim collinear (or k_T integrated) parton densities only depend on $k^+ = xp^+$

further subtleties related with spin of partons, not discussed here

Definition of parton distributions

matrix elements of quark/gluon operators

$$f_q(x) = \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \left\langle p \left| \bar{\psi}(0) \frac{1}{2} \gamma^+ \psi(z) \right| p \right\rangle \Big|_{z^+=0, z_T=0}$$

 $\psi(z) = \text{quark field operator: annihilates quark}$

 $\bar{\psi}(0)=$ conjugate field operator: creates quark

 $\frac{1}{2}\gamma^+$ sums over quark spin

$$\int \frac{dz^-}{2\pi} \, e^{ixp^+z^-}$$
 projects on quarks with $k^+ = xp^+$

- analogous definitions for polarised quarks, antiquarks, gluons
- analysis of factorisation used Feynman graphs but here provide non-perturbative definition

further subtleties related with choice of gauge, not discussed here

Factorisation for pp collisions

- \blacktriangleright example: Drell-Yan process $pp\to \gamma^*+X\to \mu^+\mu^-+X$ where X= any number of hadrons
- ▶ one parton distribution for each proton × hard scattering
 → deceptively simple physical picture



Factorisation for pp collisions

- \blacktriangleright example: Drell-Yan process $pp\to \gamma^*+X\to \mu^+\mu^-+X$ where X= any number of hadrons
- one parton distribution for each proton × hard scattering
 deceptively simple physical picture

- "spectator" interactions produce additional particles which are also part of unobserved system X ("underlying event")
- need not calculate this thanks to unitarity as long as cross section/observable sufficiently inclusive
- but must calculate/model if want more detail on the final state

More complicated final states

- ightharpoonup production of W,Z or other colourless particle (Higgs, etc) same treatment as Drell-Yan
- lacktriangle jet production in ep or pp: hard scale provided by p_T
- heavy quark production: hard scale is m_c , m_b , m_t

Importance of factorisation concept

- describe processes for study of electroweak and BSM physics, e.g.
 - W mass measurement
 - determination of Higgs boson properties
 - signal and background in new physics searches
- determine parton densities as a tool to make predictions and to learn about proton structure
 - requires many processes to disentangle quark flavors and gluons

A closer look at one-loop corrections

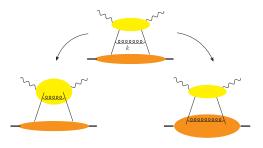
example: DIS

- UV divergences removed by standard renormalisation
- soft divergences cancel in sum over graphs
- collinear div. do not cancel, have integrals

$$\int\limits_{0}^{\infty} \frac{dk_{T}^{2}}{k_{T}^{2}}$$

what went wrong?

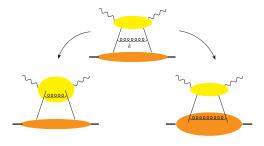
- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- ightharpoonup must not double count \rightsquigarrow factorisation scale μ



• with cutoff: take $k_T > \mu$ $1/\mu \sim$ transverse resolution

take $k_T < \mu$

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- ightharpoonup must not double count \leadsto factorisation scale μ



- with cutoff: take $k_T > \mu$ $1/\mu \sim$ transverse resolution
- in dim. reg.: subtract collinear divergence

take $k_T < \mu$

subtract ultraviolet div.

The evolution equations

DGLAP equations

$$\frac{d}{d\log\mu^2} f(x,\mu) = \int_x^1 \frac{dx'}{x'} P\left(\frac{x}{x'}\right) f(x',\mu) = \left(P \otimes f(\mu)\right)(x)$$

- ightharpoonup P = splitting functions
 - have perturbative expansion

$$P(x) = \alpha_s(\mu) P^{(0)}(x) + \alpha_s^2(\mu) P^{(1)}(x) + \alpha_s^3(\mu) P^{(2)}(x) \dots$$

known to $\mathcal{O}(\alpha_s^3)$, in part to $\mathcal{O}(\alpha_s^4)$ Moch, Vermaseren, Vogt

contains terms $\propto \delta(1-x)$ from virtual corrections

quark and gluon densities mix under evolution:

matrix evolution equation

$$\frac{d}{d\log \mu^2}\,f_i(x,\mu) = \sum_{j=q,\bar{q},g} \big(P_{ij}\otimes f_j(\mu)\big)(x) \qquad \qquad (i,j=q,\bar{q},g)$$

$$\stackrel{P_{qq}}{\nearrow} \qquad \qquad \text{more transitions}$$
 possible at higher orders in α_s

more transitions possible at higher orders in α_s

 \triangleright parton content of proton depends on resolution scale μ

Factorisation formula

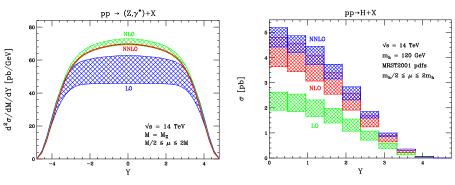
ightharpoonup example: p+p o H+X

$$\sigma(p+p \to H+X) = \sum_{i,j=q,\bar{q},g} \int dx_i dx_j \ f_i(x_i,\mu_F) f_j(x_j,\mu_F)$$
$$\times \hat{\sigma}_{ij} \left(x_i, x_j, \alpha_s(\mu_R), \mu_R, \mu_F, m_H \right) + \mathcal{O}\left(\frac{\Lambda^2}{m_H^4} \right)$$

- $\hat{\sigma}_{ij} = {
 m cross}$ section for hard scattering $i+j \to H+X$ m_H provides hard scale
- μ_R = renormalisation scale, μ_F = factorisation scale may take different or equal
- μ_F dependence in C and in f cancels up to higher orders in α_s similar discussion as for μ_B dependence
- accuracy: α_s expansion and power corrections $\mathcal{O}(\Lambda^2/m_H^2)$
- lacktriangle can make σ and $\hat{\sigma}$ differential in kinematic variables, e.g. p_T of H

Scale dependence

examples: rapidity distributions in Z/γ^* and in Higgs production



Anastasiou, Dixon, Melnikov, Petriello, hep-ph/0312266

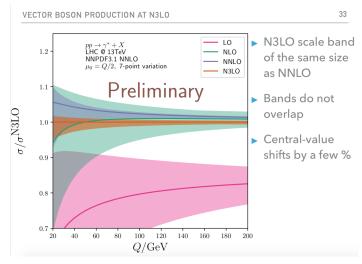
Anastasiou, Melnikov, Petriello, hep-ph/0501130

 $\mu_F = \mu_R = \mu$ varied within factor 1/2 to 2

LO, NLO, and higher

- instead of varying scale(s) may estimate higher orders by comparing N^nLO result with $N^{n-1}LO$
- caveat: comparison NLO vs. LO may not be representative for situation at higher orders often have especially large step from LO to NLO
 - rightharpoonup certain types of contribution may first appear at NLO e.g. terms with gluon density q(x) in DIS, $pp \rightarrow Z + X$, etc.
 - final state at LO may be too restrictive e.g. in $\frac{d\sigma}{dE_{T1} dE_{T2}}$ for dijet production

Just appeared: Drell-Yan at N³LO



F. Dulat, talk given at QCD@LHC, 19 July 2019

Summary of Part 3

- implements ideas of parton model in QCD
 - perturbative corrections (NLO, NNLO, ...)
 - field theoretical def. of parton densities
 → bridge to non-perturbative QCD
- ▶ valid for sufficiently inclusive observables and up to power corrections in Λ/Q or $(\Lambda/Q)^2$ which are in general not calculable
- must in a consistent way
 - remove collinear kinematic region in hard scattering
 - remove hard kinematic region in parton densities
 UV renormalisation

procedure introduces factorisation scale μ_F

separates "collinear" from "hard", "object" from "probe"