QCD for Collider Physics Part 4

M. Diehl

Deutsches Elektronen-Synchroton DESY

DESY Summer Student Programme 2019, Hamburg

Parton density fits

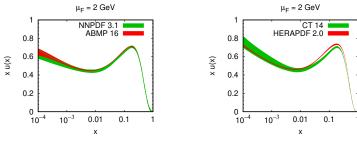
Parton densities involve QCD at low momentum scales ↔ large coupling

- \blacktriangleright can compute $\partial f(x,\mu)/\partial \mu$ in perturbation theory, but not $f(x,\mu)$
- ongoing effort to compute with non-perturbative methods e.g. in lattice QCD
- in practice: determined from experimental data

Principle of PDF determinations:

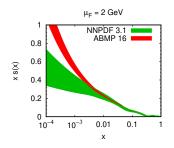
- ▶ data for observables with factorisation formulae most important: DIS $(ep \rightarrow e + X)$, Drell-Yan $(pp \rightarrow \ell^+\ell^- + X)$, $pp \rightarrow \ell\nu + X$, jets in ep and pp, $t\bar{t}$ production in pp, . . .
- ightharpoonup parameterise PDFs at "starting" scale μ_0 use DGLAP eqs. to evolve to scales μ needed in fact. formulae
- determine PDF parameters by fit to data

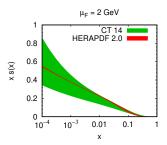
Uncertainties on extracted PDFs


"PDF errors"

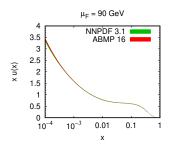
errors (stat. and syst.) of fitted data propagated to PDF parameters

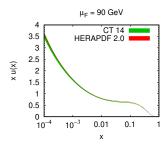
"systematic theory uncertainties"


- selection of data sets and kinematics
- perturbative order of evolution and hard-scattering cross sections
- ightharpoonup values of $lpha_s$ and m_c, m_b and possibly other constants if taken as external parameters rather than fitted
- fine details of perturbative calculations
 e.g. treatment of heavy quarks, resummation
- **Proof** power corrections (try to avoid by using data with $Q > Q_{min}$)

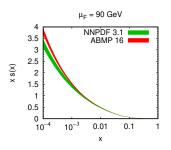

recent work: include uncertainties from higher orders in PDF errors
(using scale variation) Harland-Lang, Thorne 2018; Khalek et al. 2019

all PDFs at NNLO, error bands for 68% CL


- spread between different parameterisation often larger than error bands of single parameterisation
- ► error bands propagate uncertainties of fitted data into PDFs but do not reflect "systematic theory uncertainties" of extraction

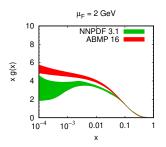


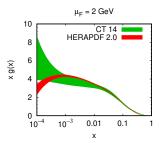
all PDFs at NNLO, error bands for 68% CL


> strangeness distribution remains poorly known sometimes assume $s(x) \propto \bar{u}(x) + \bar{d}(x)$ or $s(x) \propto \bar{d}(x)$ at $\mu = \mu_0$ \leadsto small errors in fit

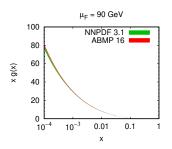


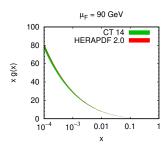
all PDFs at NNLO, error bands for 68% CL


ightharpoonup evolution to higher scales $\ensuremath{\leadsto} q \bar{q}$ pairs at low x



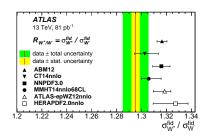
all PDFs at NNLO, error bands for 68% CL

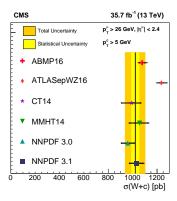

- lacktriangle evolution to higher scales $\lower q ar q$ pairs at low x
- lacktriangle all q(x) and $\bar{q}(x)$ become similar at high scales and low x
- relative uncertainties shrink



all PDFs at NNLO, error bands for 68% CL

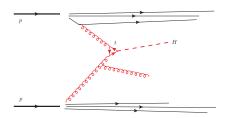
- $ightharpoonup g(x) \gg g(x)$ for x below 0.1
- ightharpoonup at low scale and low x gluon known very poorly



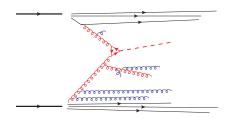

all PDFs at NNLO, error bands for 68% CL

- $ightharpoonup g(x) \gg q(x)$ for x below 0.1
- lacktriangle evolution for g(x) even stronger than for q(x)

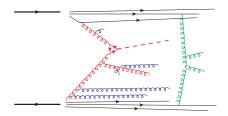
PDFs and LHC data



 W^+ and W^- production $\sqrt{s}=13\,\mathrm{TeV},\,81\,\mathrm{pb}^{-1}$ ATLAS, arXiv:1603.09222

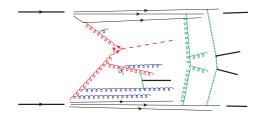

 $W+c \ \mbox{production}$ $\sqrt{s}=13 \ \mbox{TeV}, \ 35.7 \ \mbox{fb}^{-1}$ CMS, arXiv:arXiv:1811.10021

- **b** build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- ▶ but compute fully specified events, i.e. no "+X" schematically:

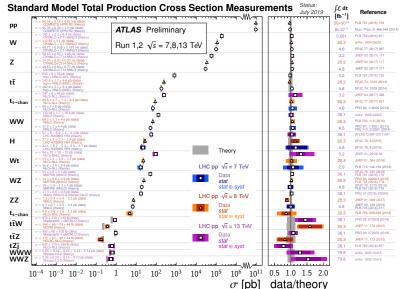

- ▶ ingredients:
 - parton densities and hard-scattering matrix elements

- **b** build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- ▶ but compute fully specified events, i.e. no "+X" schematically:

- ingredients:
 - parton densities and hard-scattering matrix elements
 - parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)


- **b** build on structure of factorisation formulae e.g. for $pp \to H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

- ingredients:
 - parton densities and hard-scattering matrix elements
 - parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)
 - models for multiparton interactions


PDFs

- **b** build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

- ingredients:
 - parton densities and hard-scattering matrix elements
 - parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)
 - models for multiparton interactions and hadronisation

Instead of a summary:

