Any Light Particle Searches at DESY

Axel Lindner

DESY Summer Student Lecture, August 9th, 2019

Beyond the Standard Model of particle phyiscs?

The standard model (SM) of particle physics is

- > extremely successful, but
- > does not provide answers to crucial questions (a selection):
 - How to integrate non-zero neutrino masses?
 - What are dark matter and dark energy?
 - How to explain the baryon-antibaryon asymmetry of the universe?
 - Why is the Higgs so light?
 - Why is CP conserved in QCD?
 - Why is the vacuum energy so tiny?

Where to look for beyond-SM-Physics?

Wherever you can! An exemplary selection:

- > Laboratory experiments
 - Energy frontier
 - Precision frontier
 - Rare decays
 - Light-through-walls
- > Astrophysics
 - Stellar evolutions, light propagation
 - Dark matter searches
- Cosmology
 - CMB, gravitational waves

Where to look for beyond-SM-Physics?

Wherever you can! An exemplary selection:

- Laboratory experiments
 - Energy frontier
 - Precision frontier
 - Rare decays
 - Light-through-walls
- Astrophysics
 - Stellar evolutions, light propagation
 - Dark matter searches
- Cosmology
 - CMB, gravitational waves

energy reach

10 TeV (LHC)

10² TeV (BELLE II, model dependent)
10³ TeV (Mu3e, model dependent)
10⁵ TeV (axions, model dependent)

10⁵ TeV (axions, model dependent)10⁹ TeV (axions, model dependent)

10¹² TeV (inflation, model dependent)

after the big bang

Jompare:

-43

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Where to look for beyond-SM-Physics?

Wherever you can! An exemplary selection:

- > Laboratory experiments
 - Energy frontier
 - Precision frontier
 - Rare decays
 - Light-through-walls
- > Astrophysics
 - Stellar evolutions, light propagation
 - Dark matter searches
- > Cosmology
 - CMB, gravitational waves

10 TeV (LHC)
10² TeV (BELLE II, model dependent)
10³ TeV (Mu3e, model dependent)
10⁵ TeV (axions, model dependent)

energy reach

10⁵ TeV (axions, model dependent)10⁹ TeV (axions, model dependent)

10¹² TeV (inflation, model dependent)

Outline

> An introduction to axions and axion-like particles

> Axions and ALPs in the sky?

- > Experimental approaches
 - ALPS II at DESY in Hamburg
 - IAXO and MADMAX

The QCD axion

Mass and coupling determined by one energy scale

With the PQ symmetry breaking scale fa:

- > Mass: $m_a = 0.6 \text{ eV} \cdot (10^7 \text{GeV} / f_a)$
- Couplings ~ 1/ f_a (hence ~ m_a)

Courtesy A. Ringwald

Axion-like particles (ALPs)

String theory suggests the simultaneous presence of many ultralight axions possibly populating each decade of mass down to the Hubble scale 10⁻³³ eV. Conversely the presence of such a plenitude of axions (an "axiverse") would be evidence for string theory.

Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.

RECEIVED: July 13, 2012 ACCEPTED: September 17, 2012 PUBLISHED: October 22, 2012

ALPs

- don't solve the problem of CP conservation of QCD,
- have couplings ~ 1/ f_{alp} , but m_{alp} and f_{alp} are not related.

Axion and axion-like particles (ALPs)

Axions and axion-like particles (ALPs)

How to look at low masses: exploiting photon couplings

Axion decay to two photons

Axions and axion-like particles (ALPs)

How to look at low masses: exploiting photon couplings

Primakoff-like axion conversion

and light-shining-through-walls.

 $P(\gamma \rightarrow a \rightarrow \gamma) \sim (g_{a\gamma\gamma} \cdot B \cdot L)^4$ ALPS II: $P(\gamma \rightarrow a \rightarrow \gamma) \approx 10^{-36}$

Sub-eV axions and axion-like particles (ALPs)

How to look: three kinds of axion/ALP sources

- Purely laboratory experiments "light-shining-through-walls", optical photons
- Helioscopes ALPs emitted by the sun, X-rays,

Haloscopes

looking for dark matter constituents, microwaves.

Axel Lindner | D

The big picture: ALPs

QCD axion range

Excluded by WISP experiments Excluded by astronomy (ass. ALP DM) Excluded by astrophysics / cosmology Axions or ALPs being cold dark matter

The big picture: ALPs

A European Strategy Towards Finding Axions and Other WISPs

K. Desch¹, B. Döbrich², I. Irastorza³, J. Jaeckel⁴, A. Lindner⁵, B. Majorovits⁶, A. Ringwald⁵,
¹Physikalisches Institut, Uni. Bonn, Nußallee 12, D-53115 Bonn, Germany
²CERN, 1 Esplanade des Particules, CH-1211 Geneva 23, Switzerland
³Departamento de Fisica Teorica, Uni. de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain
⁴Institut für Theoretische Physik, Uni. Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany
⁵DESY, Notkestraße 85, D-22607 Hamburg, Germany
⁶Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 Munich, Germany

ESPP update process, December 2018

https://indico.cern.ch/event/765096/contributions/3295758/

Outline

> An introduction to axions and axion-like particles

> Axions and ALPs in the sky?

- > Experimental approaches
 - ALPS II at DESY in Hamburg
 - IAXO and MADMAX

Dark matter production in the present universe

Dark matter production in the present universe

Dark matter with masses below 1 MeV could still be produced (thermally) in our universe today:

- axions, ALPs
- sterile neutrinos.

Next lecture: learn about axions, ALPs, stars and photons!

Dark matter candidates: where to focus experimentally?

Selection criteria:

- > Are experimental options in reach to either
 - identify dark matter candidates in laboratory experiments,
 - find directly of indirectly the particles composing the dark matter halo we are living in?
- Does the theory explain "just" dark matter or is it embedded in a more general extension of the standard model of particle physics?

HELMHOLTZ SATURATION CALLED FOR

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Hints from astrophysics?

- Stellar evolutions
- > Propagation of TeV photons
- > Photon propagation in magnetic fields

> Supernovae

Stellar evolutions

 Extra energy loss beyond SM expectations is indicated by stellar developments.

Stellar evolutions

- Extra energy loss beyond SM expectations is indicated by stellar developments.
- Example: white dwarf stars.

The change of frequency of a pulsating DA white dwarf measures its cooling rate.

Data indicate that the white dwarf cools "too fast".

https://arxiv.org/abs/1205.6180

Stellar evolutions

- Extra energy loss beyond SM expectations is indicated by stellar developments.
- Such losses can be explained consistently by the emission of axions coupling to photons and electrons.

Light ALPs would also work.

M. Giannotti, I. Irastorza, J. Redondo, A. Ringwald, http://arxiv.org/abs/1512.08108

M. Giannotti, I. Irastorza, J. Redondo, A. Ringwald, K. Saikawa https://arxiv.org/abs/1708.02111

Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

> TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.

D. Horns, M. Meyer, JCAP 1202 (2012) 033

Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

- > TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.
- > This could be explained by axion-like particles.

TeV photons in the universe

might convert in magnetic fields to ALPs via their two-photon coupling.

Such ALPs might convert back to photons in the vicinity of earth.

Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

- > TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.
- > This could be explained by axion-like particles.

TeV photons in the universe:

"Light-shining-through-the-wall" of extragalactic background light?

Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

- > TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.
- > This could be explained by axion-like particles.

A very similar axion-photon coupling as derived from stellar developments is required!

M. Meyer, D. Horns, M. Raue, arXiv:1302.1208 [astro-ph.HE], Phys. Rev. D 87, 035027 (2013)

S. V. Troitsky, arXiv:1612.01864 [astro-ph.HE], JETP Lett. 105 (2017) no.1, 55

Propagation of TeV photons

ALPs to explain an unexpected high transparency of the universe for TeV photons:

PS	PROCEEDINGS ^{OF} SCIENCE
Hints for an axion-like p	particle from PKS 1222+216?
https://arxiv.org/a	abs/1409.4401

ournal of Cosmology and Astroparticle Physics

Sensitivity of the Cherenkov Telescope Array to the detection of axion-like particles at high gamma-ray opacities

https://arxiv.org/abs/1410.1556

Axion-like particles and the propagation of gamma rays over astronomical distances

https://arxiv.org/abs/1612.01864

Advantages of axion-like particles for the description of very-high-energy blazar spectra

https://arxiv.org/abs/1503.04436

PHYSICAL REVIEW D 86, 075024 (2012)

Hardening of TeV gamma spectrum of active galactic nuclei in galaxy clusters by conversions of photons into axionlike particles

https://arxiv.org/abs/1207.0776

PHYSICAL REVIEW D 93, 045014 (2016)

Towards discrimination between galactic and intergalactic axion-photon mixing

https://arxiv.org/abs/1507.08640

Axel Lindner | DESY Summer Students 2019 | ALPS | Page 25

Photon propagation in magnetic fields

Photon spectra might be changed due to photon-ALP conversion in magnetic fields (10.1103/PhysRevD.97.063003, Zi-Qing Xia et al.):

Spectral modulations might hint at the existence of ALPs!

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

Photon propagation in magnetic fields: conflicting results!

Galactic SNR (10.1103/PhysRevD.97.063003, Zi-Qing Xia et al.):

Evidence for ALPs from IC443?

No ALPs indications from W44 and W51C, method checked with close SNRs.

Photon propagation in magnetic fields: conflicting results!

Galactic pulsars (J. Majumdar et al JCAP04(2018)048):

Pulsars selected according to the magnetic field strength along the line of sight. Method checked with close pulsar.

Photon propagation in magnetic fields: conflicting results!

Galactic pulsars (J. Majumdar et al JCAP04(2018)048):

Surprising agreement with SNR analyses! Conflict to other exclusions!

Do we understand astrophysics?

Photon propagation in magnetic fields: conflicting results!

NGC 1275, Perseus cluster (D. Malyshev et al, arXiv:1805.04388 [astro-ph.HE]):

No evidence for ALPs! "Galactic hints" are excluded!

Do we understand astrophysics?

SPITZENFORSCHUNG FÜ

HELMHO

Axel Lindner | DESY Summer Students 2019 | ALPS | Page 30

Supernovae

seem to be a bit too dim compared to expectations from the mass of progenitor stars:

O. Straniero et al, arXiv:1907.06367 [astro-ph.SR]

Axions / ALPs in reach of ALPS II and IAXO might solve the problem!

Do we understand astrophysics?

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Hints from astrophysics?

- > Stellar evolutions
- > Propagation of TeV photons
- > Photon propagation in magnetic fields
- > Supernovae

Nothing conclusive yet, but lot's of interesting data.

Strive for model independent measurements: ALPS II at DESY!

Outline

> An introduction to axions and axion-like particles

> Axions and ALPs in the sky?

- > Experimental approaches
 - ALPS II at DESY in Hamburg
 - IAXO and MADMAX

Experiments (possibly) located at DESY in Hamburg

Name	Туре	Sens (10 ⁻¹¹ GeV ⁻¹)	Location	Status	Reference
ALPS II	LSW	2, m < 0.1 meV	DESY	construction	https://arxiv.org/ abs/1302.5647
Name	Туре	Sens (10 ⁻¹¹ GeV ⁻¹)	Location	Status	Reference
IAXO (babyIAXO)	$g_{a\gamma\gamma}$	0.5, m < 10 meV, axion 1 < m < 3000 meV	DESY	evaluated	https://arxiv.org/ abs/1401.3233

Name	Туре	ALP / axion mass range	Location	Status	Reference
MADMAX	dish, dielect. booster	Axion, 4·10 ⁻⁵ to 4·10 ⁻⁴ eV	DESY	preparation	https://arxiv.org/ abs/1901.07401

These are to be complemented with other experiments (see haloscope mass range for example)!

DESY in Hamburg

Axion physics:

Opportunity to have particle physics experiments on-site complementing participation in remote experiments (ATLAS, CMS, BELLE II).

D19 | ALPS | Page 35

ALPS II: aiming for "first light" in 2020 @ DESY in HH

Collaboration

Hannover

JOHANNES GUTENBERG

UF FLORIDA

CARDIFF

PRIFYSGOL

ALPS II main contributions				
Partner	Magnets	Optics	Detectors	Infrastructure
DESY	Х	Х	Х	Х
AEI Hannover		Х		
U. Cardiff		Х		
U. Florida		Х	Х	Х
U. Mainz			Х	

Significant funding support also by the

ALPS II @ DESY in Hamburg: construction underway!

ALPS II main components: magnets from HERA

- > 12+12 dipoles from HERA, each 5.3 T on 8.8 m.
- To be straightened to achieve
 ≈ 50 mm aperture
 from 35 mm (600 m bending radius)

ALPS II main components: magnets from HERA

- > 12+12 dipoles from HERA, each 5.3 T on 8.8 m.
- To be straightened to achieve
 ≈ 50 mm aperture
 from 35 mm (600 m bending radius)

Ergebnis der Verformung am 9.5.2018

ALPS II main components: magnets from HERA

- > 12+12 dipoles from HERA, each 5.3 T on 8.8 m.
- To be straightened to achieve
 ≈ 50 mm aperture.
- > 21 magnets modified successfully (out of 21).
- > The HERA tunnel is cleared.

Dieter Trines

ALPS II main components: optics adapted from LIGO

- Mode-matched optical resonators before ("PC") and behind ("RC") the wall.
- Relative angle between PC and RC less than 5 µrad.
- Each about 100 m long, need to compensate seismic noise.
- > Power built-up PC: 5,000: 150 kW circulating power.
- > Power built-up RC: 40,000: length relative to light wavelength stabilized to 0.5 pm.

ALPS II main components: optics adapted from LIGO

Laser:

- developed for LIGO,
- based on 2 W NPRO by Innolight/Mephisto (Nd:YAG, neodymium-doped yttrium aluminium garnet),
- 1064 nm, 35 W, M²<1.1

ALPS II main components: optics

The optics is developed in a 20 m long dedicated lab "ALPS IIa".

ALPS II main components: optics status summary

	Vol. 24, No. 25 12 Dec 2016 OPTICS EXPRESS 29237
Optics EXPRESS	
aracterization .PSII experime	of optical systems for the nt
ARON D. SPECTOR, ^{1,*} NDNER, ² AND BENNO	Jan H. Põld, ² Robin Bähre, ^{3,4} Axel Willke ^{3,4}
stitut für Experimentalphysik, Uni	versität Hamburg, Luruper Chaussee 149, D-22761 Hamburg,
many eutsches Elektronen-Synchrotron (ax Planck Institute for Gravitatior	DESY), Notkestraße 85, D-22607 Hamburg, Germany 1al Physics (Albert Einstein Institute), Callinstraße 38 D-30167
mover, Germany stitute for Gravitational Physics o mover Germany	f the Leibniz Universität Hannover, Callinstraße 38, D-30167
ron.snector@desv.de	
Demonstratio	on of the length stability
requirements	
requirements finesse 10 m o	cavity
requirements finesse 10 m (Jan H. Pöld. ^{1,*} and A <i>i</i>	cavity

https://arxiv.org/abs/1710.06634

ALPS II main components: detectors

DESY:

Transition edge sensor (TES) operated at 80 mK.

Friederike Januschek

ALPS II main components: detectors

DESY:

- Transition edge sensor (TES) operated at 80 mK.
- Single 1064 nm photon detection demonstrated:
 - 5% energy resolution
 - 10⁻⁴ counts/s intrinsic background
- R&D is resuming with a new cryostat in summer 2018.

25 x 25 μm² x 20 nm

ALPS II @ DESY in Hamburg

Results and schedule

Results:

- Axions and ALPs: none (no data run yet ...)
- Publications:
 5 on optics and detector developments; several conference contributions.
- People (since 2012):
 8 Ph.D. theses completed, about 6 to come,
 5 postdocs left for a next career step.

Jan Dreyling-Eschweiler

Reza Hodajerdi

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Schedule and site:

• Start data taking in the HERA tunnel in 2020.

Axel Lindner | DESY Summer Students 2019 | ALPS | Page 47

Axions from the sun

Helioscopes

Father Christoph Scheiner (1575 – 1650)

Axions from the sun: CAST at CERN

LHC prototype magnet pointing to the sun.

Axions or ALPs from the center of the sun would come with X-ray energies, thermal spectrum.

Baseline

- > IAXO Letter of Intent: CERN-SPSC-2013-022
- > IAXO Conceptual Design: JINST 9 (2014) T05002

Baseline

- > IAXO Letter of Intent: CERN-SPSC-2013-022
- > IAXO Conceptual Design: JINST 9 (2014) T05002

Property		Value
Cryostat dimensions:	Overall length (m)	25
	Outer diameter (m)	5.2
	Cryostat volume (m ³)	~ 530
Toroid size:	Inner radius, R_{in} (m)	1.0
	Outer radius, R_{out} (m)	2.0
	Inner axial length (m)	21.0
	Outer axial length (m)	21.8
Mass:	Conductor (tons)	65
	Cold Mass (tons)	130
	Cryostat (tons)	35
	Total assembly (tons)	~ 250
Coils:	Number of racetrack coils	8
	Winding pack width (mm)	384
	Winding pack height (mm)	144
	Turns/coil	180
	Nominal current, I_{op} (kA)	12.0
	Stored energy, E (MJ)	500
	Inductance (H)	6.9
	Peak magnetic field, B_p (T)	5.4
	Average field in the bores (T)	2.5
Conductor:	Overall size (mm^2)	35×8
	Number of strands	40
	Strand diameter (mm)	1.3
	Critical current @ 5 T, I_c (kA)	58
(Operating temperature, T_{op} (K)	4.5
	Operational margin	40%
Te	emperature margin @ 5.4 T (K)	1.9
Heat Load:	at 4.5 K (W)	~ 150
	at 60-80 K (kW)	~ 1.6

Summary

Collaboration:

- 17 Institutes from 8 countries.
- Formal collaboration founding 03 July 2017 at DESY.
- DESY has offered to host IAXO.

Experiment:

• Motivation:

explore a well motivated axion parameter region (for example stellar evolutions) not accessible by other techniques.

- Approach: use experience gained at CAST (CERN) to optimize solar axion searches with dedicated magnets, X-ray optics and detectors.
- Timeline: prototype ready in 2021.
- Location: several options at DESY in Hamburg.

From babyIAXO to the full experiment

Free bore [m]	0.6
Magnetic length [m]	10
Field in bore [T]	2.5
Stored energy [MJ]	27
Peak field [T]	4.1

Dark matter axions

Haloscopes

Ann Nelson, University of Washington

MAgnetized Disc and Mirror Axion eXperiment

Principle

Dish antenna: dark matter axions might convert to photons at the surface of a magnetic mirror.

- The discontinuity of ε causes reflection.
- Such photons are emitted perpendicular to the surface.

MADMAX: combines the dish antenna with a tunable resonating structure out of dielectric disks to boost the axion-photon conversion probability.

- Balance bandwidth and boost factor.
- Access dark matter mass range not reachable with techniques (microwave cavities).

R&D

Critical items:

• provide a large aperture strong dipole magnet to host the "booster" (dielectric disks).

Studies ongoing by Bilfinger-Noell and CEA Saclay.

R&D

Critical items:

- provide a large aperture strong dipole magnet to host the "booster" (dielectric disks).
- Understand and construct the "booster".
 - Up to 80 Sapphire or LaAlO₃ discs with A=1m² to be positioned with µm accuracy on 2 m.

DESY.

Test setup at MPI Munich

R&D

Critical items:

- provide a large aperture strong dipole magnet to host the "booster" (dielectric disks).
- Understand and construct the "booster".
 - Up to 80 Sapphire or LaAIO₃ discs with A=1m² to be positioned with µm accuracy on 2 m.

MAgnetized Disc and Mirror Axion eXperiment

Status

Collaboration:

- 8 Institutes from 3 countries.
- Formal collaboration founding 20 October 2017 at DESY.

Experiment:

• Motivation:

look for well motivated axion dark matter (for example "SMASH") in a mass region not accessible by present techniques.

• Approach:

install a tunable "booster" of 80 dielectric disks inside a 2 m long dipole magnet providing $B^2 \cdot A = 100 T^2 m^2$.

- Timeline: prototype ready in 2022.
- Location: next to ALPS II in HERA North, funding proposal for infrastructure approved by Helmholtz.

Summary

Axion and axion-like particle physics

- is very well motivated by theory, cosmology and astro(particle)physics,
- > ALPS II will be the first experiment probing the astrophysics hints on ALPs.

<u>ALPS II</u>

construction has started aiming for "first light" in 2020 to probe the hints for "beyond standard model physics" from astrophysics.

With IAXO and MADMAX in addition

- > DESY might become (also) a center for experimental axion physics with
- some risks, but potentially high rewards!

