LHC physics

DESY summer student lecture August 2019

Sarah Heim, DESY

Intro

Electroweak physics, top quark

Higgs boson

Searches for physics beyond the Standard Model

Please ask questions! I will do so, too...

What these lectures are

- I tried to select some exciting LHC results from the last years
- I will try to also show you some important measurement techniques/ statistical concepts
- goal: understanding LHC plots

What these lectures are not

- complete list of LHC results
- super balanced between all experiments
 > will focus on ATLAS and CMS results
 - >> There will be a heavy-flavor lecture later, which should cover LHCb results

Experiments have webpages, sorted by physics topics

http://cms.web.cern.ch/news/cms-physics-results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/ Summary_all.html

https://twiki.cern.ch/twiki/bin/view/ALICEpublic/ALICEPublicResults

_

-

_

LHC - proton-proton mode

CMS Integrated Luminosity Delivered, pp

LHC program

Price to pay for high instantaneous luminosity

(In-time) pileup: Additional interactions per bunch crossing

Big challenge:

- not only collision of interest, but additional particles
- usually tracks and hadronic jets with fairly low transverse momentum

2018: on average ~38 interactions per bunch crossing!

Price to pay for high instantaneous luminosity

(In-time) pileup: Additional interactions per bunch crossing

Big challenge:

- not only collision of interest, but additional particles
- usually tracks and hadronic jets with fairly low transverse momentum

2018: on average ~38 interactions per bunch crossing!

Why do we care about energy and luminosity?

A bit more about cross sections at pp colliders

- Type of parton and momentum fraction (x) not known
- Exact center of mass energy of colliding quarks not known! (different at lepton colliders)

=> cross section are calculated by integrating over Parton distribution functions

$$\sigma(pp \to X) = \sum_{i,j} \int_0^1 dx_i dx_j f_i(x_i, Q^2) f_j(x_j, Q^2) d\hat{\sigma}(q_i q_j \to X, \hat{s}, Q^2)$$

Parton distribution functions

- PDFs are the probability to find a parton with a momentum fraction of x
- PDFs are not calculable, but measured in DIS experiments (with electron and neutrino scattering on nucleons)
- PDF evolution in Q² are calculable (with Altarelli-Parisi equations)
- => important uncertainty for measurements and searches!

LHC detectors - the generalists

ATLAS

- dimensions: 45*24*24 m
- magnet: 2T

CMS

- dimensions: 22*15*15
- magnet: 4T

LHC detectors - the specialists

LHCb

- dimensions: 20*5*5 m
- Record decays of B mesons
- More forward than the other

detectors

ALICE

- dimensions: 26*16*16 m
- Heavy ion collisions
- Quark gluon plasma

Closer look at the ATLAS detector

Coordinate system

x points towards the center of the ring

Coordinate system

A collision "event"

Particle identification with the ATLAS detector

...our handle towards what's happening in the collision

Need efficient, fast reconstruction and identification

In addition

- Energy/momentum calibration
 - p.ex. cell energy in calorimeter => photon energy
- Efficiency measurements
 - important to measure cross sections: Nevents = XS * Lint * A * eff
- data simulation
 - efficiencies are not the same due to imperfect detector modelling
 - needs to be corrected, otherwise comparisons will be biased

>> multivariate/machine learning techniques used where possible

Hadronic jets

- Lagrangians are written in terms of quarks and gluons
- Quark confinement: You cannot have a separate quark in the detector
- through hadronization, one quark will produce a bunch of hadrons, like pions, protons, kaons, etc

Hadronic jets

In the end, what we see in our detector is tracks and calorimeter deposits

>> need to reverse engineer the quarks/gluons

>> in a way that can be also done
for theoretical predictions
(p.ex. "infrared safe")

- >> different algorithms possible
- cone-based
- sequential clustering

>> mostly used by ATLAS/CMS: sequential clustering (anti-kT)

P. Schifferdecker

b quarks (for example from top quark or Higgs decays) will form B-mesons => B-jets

B-mesons

- large mass
- a long life-time: 1.6 * 10⁻¹² s => long! (top quark: 10⁻²⁴ s)
- large cτ: will travel ~0.5 mm before decay
- high number of charged particles per decay
- chance of leptonic decay

B-jets can be selected ("tagged") using some of the criteria above, Secondary especially the life-time (secondary vertex) => multivariate analysis

One word about fakes

- a particle is not always unambiguously identified
- example: electrons can be "faked" by jets
- >> apply criteria to reject fakes>> find ways to estimate this (usually in data)

most pp collisions produce low energy quark/gluon jets

=> to find heavy particles, need to filter!

- Already during data-taking
- We do not have enough space on disc to store all events
- filter: "Trigger"
- hardware and software component
- 40 MHz => 1 kHz

More selection "offline" (next lecture)

A bit more on the trigger

super important! What is not triggered on is lost!

1978 - 1986	PETRA (DESY) - e+e-, ~30 GeV
1981 - 1991	 SPS (Cern) p anti-p collider, up to 450 GeV L_{int} ~ (10 pb⁻¹?)
1983 - 2011	 Tevatron (Fermilab) p anti-p collider, 1.8-1.96 TeV L_{int} ~ 10 fb⁻¹ (at 1.96 TeV)
1989 - 2001	 LEP (Cern) e+ e- collider, up to 209 GeV L_{int} ~ 1 fb⁻¹
2009 - 2036	 LHC (Cern) pp collider, 7-13 TeV L_{int} ~ 200 fb⁻¹ and growing
Future	ILC/CLIC/FCC/CEPC?

- Theory describing fundamental particles and their interactions through
 - Electromagnetic force
 - Weak force
 - Strong force

$$\begin{split} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \Psi \mathcal{B} \Psi + h.c. \\ &+ \Psi_i \mathcal{B}_i \Psi_j \Phi + h.c. \\ &+ |D_\mu \Phi|^2 - V(\Phi) \end{split}$$

- Test the SM
- Find the Higgs boson
- Find physics beyond the Standard Model
 - as the Standard Model cannot explain dark matter, matter-antimatter asymmetry etc.

Backup

Backup: ATLAS trigger system

