

Broken Lines refinement

C. Kleinwort

DESY/HH alignment meeting 10.11.09

Reminder

- * Broken Lines trajectory
 - Defined by offsets ui(si)
 - Connected by kinks Bi
 and curvature

Si-1

Ui-1

 $m_i \pm \sigma_i$

Si+1

Si+2

Si

- $ightharpoonup V_{\beta}$ from multiple scattering
- Definition of offsets should reflect material distribution (centers of gravity for thin scatterer approximation)

Thin vs thick scatterer

* Thin scatterer θ_i^2 at s_i

- Covariance matrix for (slope, offset) $V_i(s_i) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \theta_i^2$
- Propagated to s $\mathbf{V}_{i}(s) = \begin{pmatrix} 1 & s s_{i} \\ s s_{i} & (s s_{i})^{2} \end{pmatrix} \theta_{i}^{2}$ Thick scatterer

$$V_i(s_i) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \theta_i^2$$

* Thick scatterer

- Sum of many thin scatters $V(s) = \sum V_i(s)$
- Use weighted mean s_{cog} and variance Δs^2 of s_i

$$\left(s_{cog} = \frac{1}{\theta^2} \sum_{i} s_i \theta_i^2 \qquad \Delta s^2 = \frac{1}{\theta^2} \sum_{i} \left(s_{cog} - s_i \right)^2 \theta_i^2 \qquad \Rightarrow V \left(s_{cog} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & \Delta s^2 \end{array} \right) \theta^2 \right) \left(\theta^2 = \sum_{i} \theta_i^2 \right)$$

At large distance $((s-s_{cog})^2 >> \Delta s^2)$ like thin scat. at center of gravity $V(s) \approx \begin{pmatrix} 1 & s-s_{cog} \\ s-s_{cog} & (s-s_{cog})^2 \end{pmatrix}^{\theta^2}$

$$\mathbf{V}(s) \approx \begin{pmatrix} 1 & s - s_{cog} \\ s - s_{cog} & \left(s - s_{cog}\right)^2 \end{pmatrix} \theta^2$$

Material vs measurement (I)

- * Simple case
 - Material and measurement at same place (e.g. Si sensor)
- * Material ui without measurement
 - Example
 - * Z offset for sensor with only Rφ measurement
 - No difference for broken line

Material vs measurement (II)

- * Measurement ui without material
 - Example
 - + Material COG of double layer is between measurements
 - ► No variance V_B at u_i
 - + ui isn't free (fit) parameter anymore

•
$$\beta_i$$
 equation can be solved for u_i
$$u_i = u_{i-1} \frac{s_{i+1} - s_i}{s_{i+1} - s_{i-1}} + u_{i+1} \frac{s_i - s_{i-1}}{s_{i+1} - s_{i-1}} + \frac{1}{2} (s_i - s_{i-1})(s_i - s_{i+1}) \kappa$$

- Curvature from (Kalman) fit usually correct
 - + Correction K≈0 ⇒ linear interpolation sufficient
- new > Applied for combined layers in coarse broken lines

Double layers

- * Combine (s_1,s_2) to one layer (s_0)
 - Assume same material $V_{\beta 1} = V_{\beta 2}$
 - $> s_0 = (s_1 + s_2)/2, V_{\beta 0} = V_{\beta 1} + V_{\beta 2}$

 $u_1 = u_0 \frac{s_1 - s_-}{s_0 - s_-} + u_- \frac{s_0 - s_1}{s_0 - s_-}$

 $u_2 = u_0 \frac{s_+ - s_2}{s_+ - s_0} + u_+ \frac{s_2 - s_0}{s_+ - s_0}$

- ▶ Broken line described by (u_-, u_0, u_+) , $V_{\beta 0}$ (and κ)
- * Offsets u₁, u₂ at measurements
 - Linear interpolation of (u₋, u₀, u₊)
- * Robust
 - Works even for $s_1=s_2$
 - + Broken line with separate layers would fail $(1/(s_1-s_2)!)$