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Outline

> Introduction to laser-driven plasma wakefield accelerators: why do we care?


> Properties of plasma wakefields


> (Some) controlled beam injection techniques


> Energy limit of the acceleration process


> Annex: beam-driven plasma wakefield acceleration (and the FLASHForward project)
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Accelerators are at the heart 
of high-energy photon sources and particle colliders
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CUTTING-EDGE, HIGH-END SLOW-MOTION-CAMERAS AND MICROSCOPES TO STUDY THE STRUCTURE OF MATTER

Simulation of the decay of 
a Higgs Boson (LHC, CERN)

DESY Hamburg

Particle colliders 
investigation of the fundamental 
forces and constituents of matter

http://forward.desy.de


Jens Osterhoff  |  forward.desy.de  |  Summer Student Programme DESY  |  August 19, 2019  |  Page 00 

Accelerators are at the heart 
of high-energy photon sources and particle colliders
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CUTTING-EDGE, HIGH-END SLOW-MOTION-CAMERAS AND MICROSCOPES TO STUDY THE STRUCTURE OF MATTER

Simulation of the decay of 
a Higgs Boson (LHC, CERN)

DESY Hamburg

Particle colliders 
investigation of the fundamental 
forces and constituents of matter

Illustration of an FEL-pulse 
diffracting off a protein (XFEL, DESY)

Anton Barty, CFEL/DESY Hamburg

Synchrotron photon sources, e.g. Free-Electron Lasers (FELs) 
investigation of processes on atomic and molecular scales

Applications beyond matter 
- medical accelerators (e.g. cancer therapy)

- material processing (e.g. food sterilization, welding)

- accelerator-driven reactors

- cargo scanning (e.g. for nuclear fuel)

http://forward.desy.de


Earth
∅ 12700 km



European XFEL
3.4 km

FLASH
315 m

PETRA III
⟳ 2.3 km



FLASH FEL facility
315 m long with ~100 m 1.2 GeV SRF accelerator
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What defines the scale length of the accelerator?

�9

~1 m long TESLA-type superconducting structure

To be added here: Working principle of RF cavities, 
focus on electron accelerators

Electron 
bunch

Working principle of an RF-cavity

LIMITS OF CONVENTIONAL TECHNOLOGY
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What defines the scale length of the accelerator?

�9

Accelerating field strength limited to 
~50 MV/m by electrical breakdown

Energy increase can only be achieved 
by longer acceleration distances!

�Wkin = eEzdKinetic energy gain:

The goal: electrons with well defined energy gain

~1 m long TESLA-type superconducting structure

To be added here: Working principle of RF cavities, 
focus on electron accelerators

Electron 
bunch

Alternating longitudinal electric field Ez

Standing microwave (1.3 GHz)

Working principle of an RF-cavity

LIMITS OF CONVENTIONAL TECHNOLOGY
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What defines the scale length of the accelerator?

�10

Ring accelerators for electrons?
Advantage: the same (short) acceleration section may be used multiple times

Disadvantage: the energy loss by synchrotron radiation limits the maximum energy

(and achievable beam quality: insufficient for X-ray FELs…)
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Example: utilize the LEP/LHC ring (27 km circumference) for electrons
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LIMITS OF CONVENTIONAL TECHNOLOGY
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FLASH FEL facility
315 m long with ~100 m 1.2 GeV SRF accelerator



Plasma wakefield accelerator
0.07 m

delivers ~1 GeV, a similar energy as FLASH 
→ Leemans et al., Nature Physics 2, 696 (2006)
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Plasma wakefield acceleration in a nutshell
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Witness

e-

Driver
Plasma target

~cm scale length

Laser-pulse driven  
“Laser wakefield acceleration” 

LWFA

Particle-beam driven 
“Plasma wakefield acceleration” 

PWFA
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Plasma wakefield acceleration in a nutshell
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Hydrogen plasma: 
a soup of electrons and protons

http://forward.desy.de
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Plasma wakefield acceleration in a nutshell
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Protons are ~2000× heavier 
than electrons, move slowly

http://forward.desy.de
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Plasma wakefield acceleration in a nutshell

�17

Driver acts as electron “snow plow”,  
static protons pull back electrons

http://forward.desy.de
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Plasma wakefield acceleration in a nutshell
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Driver acts as electron “snow plow”,  
static protons pull back electrons

Witness

e-

Driver
Plasma target

~cm scale length

Laser-pulse driven  
“Laser wakefield acceleration” 

LWFA

Particle-beam driven 
“Plasma wakefield acceleration” 

PWFA

2

Probing underdense interactions @ FSU-Jena: 
Laser wakefield acceleration of electrons 

2

100 µm

10 µm

100 µm

10 µm

High-resolution (µm and fs) visualization of plasma wave and its evolution

Also high-sensitivity measurement of pulse front tilt!
M. Schwab et al., Applied Physics Letters 103, 191118 (2013)
M. Schnell et al., Nature Communications 4, 2421 (2013) 
A. Sävert et al., Physical Review Letters 115, 055002 (2015)

ne = 1.7�1019 cm-3, !plasma = 9 µm

M. Schnell et al., Nat. Comm. 4, 2421 (2013)

FSU Jena, Gruppe M. Kaluza

http://forward.desy.de
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c0 c0

λp

DriverWitness

Interesting for applications
< µm emittance 

~kA current
~GeV energy 
~fs duration

Co-propagating, strong fields for acceleration

GeV energy gain over cm

→ W.P. Leemans et al., 
Nature Physics 2, 696 (2006)

Bunch duration: fs

→ O. Lundh et al., 
Nature Physics 7, 219 (2011)

→ A. Buck et al.,  
Nature Physics 7, 543 (2011)

E ⇡ mc!p

e
⇡ (96 V/m)

q
ne[cm

�3]

typically E ≈ 100 GV/m (for ne ≈ 1018 cm-3)

Electric field strength

Size of structure

typically λp ≈ 33 µm (for ne ≈ 1018 cm-3)

�p ⇡ 2⇡c

!p
⇡ (33 km)

q
n�1
e [cm�3]
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Basics of plasma-based particle acceleration

�20

Wake excitation

http://forward.desy.de
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Basics of plasma-based particle acceleration

�20

Wake excitation Particle injection
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Basics of plasma-based particle acceleration

�20

Wake excitation Particle injection

http://forward.desy.de


Just to make sure, you are paying attention…

What is the color of the surfers pants?
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Simple fluid model for plasma-wave excitation

�22

1d in space 
3d in momentum

20 Stable, ultra-relativistic electron beams by laser-wakefield acceleration

In this one-dimensional description the scalar field potential ⇧ does not vary in transverse
direction with respect to the x-axis, hence (⌃⇧)(⌃y)�1 = 0 does not appear in the expression
above. Consequently, the temporal integration of (1.4.2) gives a relation for py assuming a
negligible initial transverse drift:

py = eAy (1.4.3)

In normalized measures, this corresponds to:

⇥�y = a0 (1.4.4)

Longitudinal momentum equation. The Lorentz equation for the longitudinal electron-
momentum component in laser propagation direction px yields:

dpx
dt

= �e (Ex + vyBz)

Similar to eq. (1.4.2), the electric and magnetic fields can be expressed also in this case by scalar
and vector potentials with Ex = �(⌃⇧)(⌃x)�1 and Bz = (⌃Ay)(⌃x)�1, respectively. Here it is
assumed that Ax = 0, which will be justified retroactively with the application of the Coulomb
gauge later in the derivation. The longitudinal Lorentz equation can be further transformed
by making use of (1.4.3) and by substituting the quantities Ay, ⇧ and vx with their normalized
counterparts:

d

dt
(⇥�x) = c

⇤
⌃⌅0
⌃x
� 1

2⇥
⌃a20
⌃x

⌅

(1.4.5)

Continuity equation. The total charge contained inside the fluid-like plasma medium is
preserved as long as ionization and recombination do not play a role. Hence a continuity
equation can be introduced:

⌃ne
⌃t

+ c ⌃
⌃x

(ne�x) = 0 (1.4.6)

Electro-magnetic wave equation. The propagating electro-magnetic modes may be for-
malized by expressing the electric and magnetic fields through potentials (1.1.1) as done before,
which then are combined with Ampere’s law under consideration of the Coulomb gauge ⇤ �A = 0
(compare to eqs. 1.1.2):

1
c2
⌃2Ay
⌃t2
�⇤2Ay = �µ0enevy

Here, the vector identity ⇤⇥
�
⇤⇥ �A

⇥
= ⇤

�
⇤ �A
⇥
�⇤2 �A was used and, as noted above, Ax and

(⌃⇧)(⌃y)�1 equal zero. This expression can be rewritten in normalized units when considering
eq. (1.4.3) and the definition of the plasma frequency ⇧p in the unperturbed system:

⌃2a0
⌃t2
� c2⌃

2a0
⌃y2

= �⇧2
p
n0a0
⇥

(1.4.7)

with the electron density normalized to the initial electron background density n0 = ne(Zni)�1.
Poisson’s equation. Local charge separation sets up electric potentials, which can be ob-

Transverse electron momentum 
(from equation of motion)
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Electro-magnetic wave equation
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tained from Poisson’s equation:

⇥2⇧ = � e
⇤0

(Zni � ne)

In normalized units this transmutes into:

�2⌃0
�x2 =

⌥2
p
c2

(n0 � 1) (1.4.8)

The relativistic “-factor. ⇥ can be expressed more conveniently by substituting eq. (1.4.4)
for the transverse velocity:

⇥ = 1
 

1� �2
x � �2

y
=
 

1 + a20 
1� �2

x
(1.4.9)

Then, the light amplitude a0 constitutes the only influence on the electron velocity �y normal
to the longitudinal component �x, which is governed by both the wake potential and the laser
vector potential. Therefore, it is common to split ⇥ into an a0-dependent transverse factor and
a longitudinal part:

⇥ = ⇥⇥⇥⇤ with

⇧
�⌥

�⌃

⇥⇥ =
�
1 + a20

⇥1/2

⇥⇤ =
�
1� �2

x
⇥�1/2

Coordinate transformation into a co-moving frame

The just presented expressions for the longitudinal momentum (1.4.5), electron density conti-
nuity (1.4.6), the electro-magnetic modes (1.4.7), the potentials originating from local charge
separation (1.4.8) and the factor ⇥ (1.4.9) constitute a closed set of equations coupling electro-
magnetic and plasma waves. For further progress it is convenient to apply a coordinate trans-
formation of the form ⇧ = t and ⌅ = x � vgt to these relations, which converts them into a
frame co-moving with the light wave at its group velocity vg. Then the spatial and temporal
derivatives become:

�

�x
= �
�⌅

and �

�t
= �
�⇧
� vg
�

�⌅

As may be seen, the transformation is of the Eulerian type and not Lorentz invariant. A Lorentz
transformation would be applicable as well, but leads to more complicated formulas and entails
a reinterpretation of the results in the laboratory frame [McKinstrie and DuBois 1988].
Now, the identity (1.4.9) can be solved for �a20(�⌅)�1:

�a20
�⌅

= 2⇥
⇤
�⇥

�⌅
� ⇥�x

��x
�⌅
� �2

x
�⇥

�⌅

⌅

(1.4.10)

This will soon turn out to be useful for applying the transformation on the longitudinal mo-
mentum equation. In the new coordinate system eq. (1.4.5) yields:

d

dt
(⇥�x) =

⇤
�

�⇧
� vg
�

�⌅
+ c�x

�

�⌅

⌅

(⇥�x) = c
⇤
�⌃0
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� 1

2⇥
�a20
�⌅

⌅

Poisson’s equation
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Continuity equation. The total charge contained inside the fluid-like plasma medium is
preserved as long as ionization and recombination do not play a role. Hence a continuity
equation can be introduced:
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Electro-magnetic wave equation. The propagating electro-magnetic modes may be for-
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with the electron density normalized to the initial electron background density n0 = ne(Zni)�1.
Poisson’s equation. Local charge separation sets up electric potentials, which can be ob-

Continuity equation
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Longitudinal electron momentum  
(from equation of motion)

Transformation into a co-moving frame with
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This will soon turn out to be useful for applying the transformation on the longitudinal mo-
mentum equation. In the new coordinate system eq. (1.4.5) yields:
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and quasi-static approximation
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From this, it follows that C ⇥ = �1 and C ⇥⇥ = �g. Now, (1.4.13) and (1.4.14) become:

⌅0 = ⇥ (1� �g�x)� 1 (1.4.15)

n0 = �g
�g � �x

(1.4.16)

Owing to the fixed electro-magnetic fields on the fluid timescale, the wakefield quantities can
be given independently of the laser evolution only depending on the normalized amplitude a0.
The square of (1.4.15) yields after utilizing (1.4.9) and introducing ⇥g = (1� �g)�1/2:

⇥ = ⇥2
g (1 + ⌅0) (1� �g⇧) with ⇧ =

����1� 1 + a20
⇥2

g (1 + ⌅0)2

This explicit expression for ⇥ allows to solve (1.4.15) for �x:

�x = �g � ⇧
1� �g⇧

(1.4.17)

That result may be used to eliminate �x from (1.4.16) to obtain the sought-after expression:

n0 = ⇥2
g�g
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1
⇧
� �g

⇥

(1.4.18)

Numerical solution and discussion of the results

Finally, this leads to a set of di↵erential equations, which details the temporal and spatial
evolution of electron density and electric potentials in a laser-driven plasma wake. The total
scalar potential is determined by Poisson’s equation (1.4.8), which can be written as:
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(1.4.19)

This is a nonlinear ordinary di↵erential equation and can be solved numerically. When applying
the QSA for the case of �g ⇥ 1, (1.4.19) transforms into:
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⇤
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(1.4.20)

Once ⌅0 is determined, �x and n0 are easily calculated with the help of (1.4.17) and (1.4.18).
An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
wakefield quantities ⌅0, n0 and the normalized longitudinal electric field e0 = �c⌃�1

p ⌥⌅0(⌥⇤)�1

display typical behavior for the relativistic regime such as spiked electron-density maxima at
the local minima of the electric potential and almost linear electric fields trailing those spikes.

Resulting differential equation for scalar potential
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Once ⌅0 is determined, �x and n0 are easily calculated with the help of (1.4.17) and (1.4.18).
An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
wakefield quantities ⌅0, n0 and the normalized longitudinal electric field e0 = �c⌃�1
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display typical behavior for the relativistic regime such as spiked electron-density maxima at
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λp ∝ np-1/2
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Once ⌅0 is determined, �x and n0 are easily calculated with the help of (1.4.17) and (1.4.18).
An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
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Probing underdense interactions @ FSU-Jena: 
Laser wakefield acceleration of electrons 
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100 µm

10 µm

100 µm

10 µm

High-resolution (µm and fs) visualization of plasma wave and its evolution

Also high-sensitivity measurement of pulse front tilt!
M. Schwab et al., Applied Physics Letters 103, 191118 (2013)
M. Schnell et al., Nature Communications 4, 2421 (2013) 
A. Sävert et al., Physical Review Letters 115, 055002 (2015)

ne = 1.7�1019 cm-3, !plasma = 9 µm

M. Schnell et al., Nat. Comm. 4, 2421 (2013)
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Wakefield properties in transverse dimensions
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Electron self-injection

The effects taking place when focusing a relativistic laser pulse into underdense plasma not
only enable relativistic electron acceleration due to high longitudinal fields, but inherently
provide the mechanism of the electron placement in the accelerating phase of the wakefield.
This inherent injection is called self-injection.

Different mechanisms for self-injection or self-trapping of electrons in the accelerating phase
of the wake exist. The one-dimensional fluid theory cannot provide a full description but the
understanding for some of these mechanisms.

The energy of an electron in presence of the vector potential a(ξ) of a laser pulse and the
scalar potential φ(ξ) induced by a plasma wave in accordance to the one-dimensional fluid
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The effects taking place when focusing a relativistic laser pulse into underdense plasma not
only enable relativistic electron acceleration due to high longitudinal fields, but inherently
provide the mechanism of the electron placement in the accelerating phase of the wakefield.
This inherent injection is called self-injection.

Different mechanisms for self-injection or self-trapping of electrons in the accelerating phase
of the wake exist. The one-dimensional fluid theory cannot provide a full description but the
understanding for some of these mechanisms.

The energy of an electron in presence of the vector potential a(ξ) of a laser pulse and the
scalar potential φ(ξ) induced by a plasma wave in accordance to the one-dimensional fluid

12

Ey

E0

Focusing phase

Transverse fields 
of a quasi-linear plasma wave

3d in space 
3d in momentum

Fraction of plasma wavelength usable for electron acceleration?
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Wakefield properties in transverse dimensions

�25

3d in space 
3d in momentum

from C.B.Schroeder et al., PRSTAB 13, 101301 (2010)

Quasi-linear regime Non-linear regime

http://forward.desy.de


Initial laser pulse 
a0 = 2


λc = 800 nm 
Δτ = 25 fs FWHM


w0 = 23 μm FWHM


Plasma density 
np ≤ 5×1018 cm-3

The LWFA process 
can be complex

3D particle-in-cell (PIC) sim
ulation

- laser self-focussing

- laser self-compression

- wave breaking 
- beam hosing

- beam loading

- …

E0 =
cme!p

e

Ewb = E0

q
2(�� � 1)

Cold, non-relativistic wave breaking limit

Cold, relativistic wave breaking limit

Temperature and transverse dynamics  
require further modifications…
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Longitudinal phase space for test particles in wakefield

�27

â0 = 2

Hamiltonian:

confer T. Esirkepov et al., Phys. Rev. Lett. 96, 014803 (2006)
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Ionization for injection control

�28

idea: 
demonstration:

D.Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996)
A.Pak et al., Phys. Rev. Lett. 104, 025003 (2010)

C.McGuffey et al., Phys. Rev. Lett. 104, 025004 (2010)

> ionization of dopant gas near laser-pulse peak intensity 
> dopant concentration to tune injected charge and beam loading
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Colliding lasers for injection control

�29

idea: 
demonstration:

E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)
J.Faure et al., Nature 444, 737 (2006)

> colliding lasers create strong ponderomotive kick 
> control laser parameters (pol., λ, a0) and overlap position for injection control

http://forward.desy.de
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�29
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demonstration:

E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)
J.Faure et al., Nature 444, 737 (2006)

> colliding lasers create strong ponderomotive kick 
> control laser parameters (pol., λ, a0) and overlap position for injection control
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Density slopes for injection control

�30

reduced 

phase velocity

acceleration

v�
c

� 1 ⇡ � ⇠

2ne

dne

dz

idea: 
demonstration:

S.Bulanov et al., Phys. Rev. E 58, R5257 (1998)
C.G.R.Geddes et al., Phys. Rev. Lett. 100, 215004 (2008)

> phase velocity of plasma wake reduced on density down-slope 
> velocity of electrons may exceed vΦ, leads to trapping 
> trapping in multiple buckets possible
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Energy gain scalings and single-stage limitations

�31

2 zR

Laser

Plasma waveguide

Capillary discharge plasma waveguides

- Plasma fully ionized for t > 50 ns 
- After t ~ 80 ns plasma is in quasi-equilibrium: 

Ohmic heating is balanced by conduction of 
heat to wall 

- Ablation rate small: cap. lasts for >106 shots 
- np ≈ 1017 - 1019 cm-3

LASER DIFFRACTION: MITIGATED BY TRANSVERSE PLASMA DENSITY TAILORING (PLASMA CHANNEL)
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Energy gain scalings and single-stage limitations

�31

2 zR

Laser

Plasma waveguide

Capillary discharge plasma waveguides

- Plasma fully ionized for t > 50 ns 
- After t ~ 80 ns plasma is in quasi-equilibrium: 

Ohmic heating is balanced by conduction of 
heat to wall 

- Ablation rate small: cap. lasts for >106 shots 
- np ≈ 1017 - 1019 cm-3

In this example: 
ZR = 2 mm, guiding over 16 mm, guiding efficiency > 90 %

Karsch, Osterhoff et al., New J. Phys. 9, 415 (2007)

D.J. Spence et al., J. Phys. B 34, 4103 (2001)

LASER DIFFRACTION: MITIGATED BY TRANSVERSE PLASMA DENSITY TAILORING (PLASMA CHANNEL)

http://forward.desy.de


Jens Osterhoff  |  forward.desy.de  |  Summer Student Programme DESY  |  August 19, 2019  |  Page 00 

Energy gain scalings and single-stage limitations

�32

Constant density plasma 

⇒ they outrun the accelerating field structure

Laser pulse, plasma wave travel with vΦ = vg < c
Electrons travel with ve ≈ c > vΦ

ELECTRON-LASER DEPHASING: MITIGATED BY LONGITUDINAL PLASMA DENSITY TAILORING (PLASMA TAPER)
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Energy gain scalings and single-stage limitations

�32

Constant density plasma 

⇒ they outrun the accelerating field structure

Laser pulse, plasma wave travel with vΦ = vg < c
Electrons travel with ve ≈ c > vΦ

Rising density plasma

→ Rittershofer et al., Phys. Plasmas 17, 063104 (2010)

Plasma wave phase velocity vΦ may be set to ve

⇒ electrons can be phase locked 
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Energy gain scalings and single-stage limitations

�33
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confer C.B.Schroeder et al., 
PRSTAB 13, 101301 (2010)

Coefficients determined 
from PIC simulations in the 
quasi-linear regime (a0 = 1.5)

LASER DEPLETION: ENERGY LOSS INTO PLASMA WAVE EXCITATION
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Straw-man design of a TeV-class LWFA-based linear collider

�38

→ W.P. Leemans and E. Esarey, 
Physics Today (March 2009)

Design based on

> 100x 10 GeV stages driven by a PW laser at ne ≈ 1017 cm-3

Challenges / required R&D

> Single acceleration module 
deliver consistent beam quality  
           → emittance, energy, energy spread, charge  
efficient energy transfer of driver to witness

> Positron acceleration

> Coupling of two plasma stages 
electron beam extraction and injection → beam quality preservation

> Positron beam generation (with low emittance)
> Electron beam generation (with low emittance)

> Laser in-coupling 
→ accelerator length

> Heat management

> Final focus system

> Laser system 
high peak power,  
high average power + efficiency
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Efficiency and average-power requirements 
demand a quantum leap in laser technology

�39

confer C.B. Schroeder et al., Phys. Rev. STAB 13, 101301 (2010)Required power per particle beam Pb ≈ 5 MW 
Maximum power from the grid PAC ≈ 200 MW 

→ Need 5% wallplug efficiency

> Efficiency laser to plasma wave ∼50% 
> Efficiency plasma wave to beam ∼30%

confer B. Shadwick et al., Phys. Plasmas 16, 056704 (2009)

from simulations

→ Expected laser-to-beam efficiency of 15%

→ Requires wallplug-to-laser efficiency of 33%

With 10 GeV modules ×50 and total energy per beam ~300 J 
→ 6 J energy gain per module 
→ 40 J laser energy per module at ~17 kHz repetition rate 
→ 680 kW average laser power required

Modern 1 PW lasers: ≪ 1% wallplug efficiency, ~100 W average power
→ Current roadblock for LWFA colliders.

http://forward.desy.de
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Efficiency and average-power requirements 
demand a quantum leap in laser technology

�39

confer C.B. Schroeder et al., Phys. Rev. STAB 13, 101301 (2010)Required power per particle beam Pb ≈ 5 MW 
Maximum power from the grid PAC ≈ 200 MW 

→ Need 5% wallplug efficiency

> Efficiency laser to plasma wave ∼50% 
> Efficiency plasma wave to beam ∼30%

confer B. Shadwick et al., Phys. Plasmas 16, 056704 (2009)

from simulations

→ Expected laser-to-beam efficiency of 15%

→ Requires wallplug-to-laser efficiency of 33%

With 10 GeV modules ×50 and total energy per beam ~300 J 
→ 6 J energy gain per module 
→ 40 J laser energy per module at ~17 kHz repetition rate 
→ 680 kW average laser power required

Modern 1 PW lasers: ≪ 1% wallplug efficiency, ~100 W average power
→ Current roadblock for LWFA colliders.

ICAN Project
G. Mourou et al., 

Nature Photonics 7, 258 (2013)

High-peak and high-average power,  
high-efficiency lasers based on fibers
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What makes beam-driven plasma accelerators attractive?

�40

> Particle beams may be produced at high average power (up to MWs) 
- ~100 W average power of state-of-the-art TW to PW laser technology 

> Particle-beam production is efficient (~10 % from the wall plug) 
- ≪ 1 % wall-plug efficiency for high-intensity lasers 

> Driver-beam stability (can be ≪ 1 %) 
- high peak-power lasers fluctuate ~1% in intensity

Advantages 

> Require a large conventional accelerator to produce driver, therefore cannot be as compact
Considerable 
disadvantage

VS. LASER-BASED WAKEFIELD ACCELERATORS
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g > No dephasing of plasma wakefield and electron beam, wave breaking difficult 

- LWFA: pulse velocity less than c, electrons outrun wake, wave breaking can lead to dark current 
> Diffraction lengths longer than energy depletion scales for beams of µm normalized emittance 

- diffraction length of laser pulse shorter than depletion distances → limits witness beam energy
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The next-generation plasma wakefield accelerator - 
FLASHForward‣‣ at DESY

�41

> an extension to the FLASH 1.2 GeV superconducting RF FEL facility 
> a new experiment for beam-driven plasma wakefield accelerator research

FLASHForward is

FLASH FEL

FLASH 2 FEL
Extraction Differential 

pumping

Driver dump

Beam diagnostics section

Laser/plasma 
photon diagnostics

Pl
as

m
a 

ce
ll

4 fs, 100 µJ + 25 TW

Probe/ionization/injection lasers

Beam matching and focussing section

FLASH accelerator

X-TCAV
Witness dump

PHASE I (2017-2020)

- boost FLASH to ~2 GeV with high efficiency (30%), conserve emittance and energy spread 
- generate usable beams in plasma with low emittance (≤ 100 nm) at > 1.5 GeV

> to demonstrate beam quality from a plasma-based wakefield accelerator suitable for  
first applications in photon science as a stepping stone towards high-energy physics applications

Scientific mission
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The next-generation plasma wakefield accelerator - 
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�41

> an extension to the FLASH 1.2 GeV superconducting RF FEL facility 
> a new experiment for beam-driven plasma wakefield accelerator research

FLASHForward is

FLASH FEL

FLASH 2 FEL
Extraction Differential 

pumping

Driver dump

Beam diagnostics section

Laser/plasma 
photon diagnostics

Pl
as

m
a 

ce
ll

4 fs, 100 µJ + 25 TW

Probe/ionization/injection lasers

Beam matching and focussing section

FLASH accelerator

X-TCAV
Witness dump

PHASE I (2017-2020)

Witness dump

Witness  
dump

Undulator

X-ray diagnostics

PHASE II (2020+)

- boost FLASH to ~2 GeV with high efficiency (30%), conserve emittance and energy spread 
- generate usable beams in plasma with low emittance (≤ 100 nm) at > 1.5 GeV

> to demonstrate beam quality from a plasma-based wakefield accelerator suitable for  
first applications in photon science as a stepping stone towards high-energy physics applications

Scientific mission

http://forward.desy.de


Jens Osterhoff  |  forward.desy.de  |  Summer Student Programme DESY  |  August 19, 2019  |  Page 00 

Summary

�42

> Accelerators are at the heart of most photon science and particle physics experiments, but are large installations 
> Plasma wakefield technology offers a promising path to compact accelerators with > 10 GV/m fields 
> Two alternative driver technologies: laser- and beam-excited plasma wakes 

> Common goal: 
- plasma accelerator research → usable plasma accelerators 

> Hope: miniaturization of accelerators leads to  
- significant cost reduction  
- widespread proliferation of compact accelerator technology 
- beams with new and extreme properties 

> Plasmas may have a revolutionary influence on accelerator applications
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