DESY Summer Student School Hamburg | August 19th, 2019

PLASMA WAKEFIELD ACCELERATION

An introduction to laser- (and beam-)driven concepts

FLASHFORWARD Project Leader | Head, Research Group for Plasma Wakefield Accelerators Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technology Helmholtz Association of German Research Centres, Berlin, Germany

Jens Osterhoff

Outline

- > Introduction to laser-driven plasma wakefield accelerators: why do we care?
- > Properties of plasma wakefields
- > (Some) controlled beam injection techniques
- Energy limit of the acceleration process
- > Annex: beam-driven plasma wakefield acceleration (and the FLASHForward project)

Accelerators are at the heart of high-energy photon sources and particle colliders

CUTTING-EDGE, HIGH-END SLOW-MOTION-CAMERAS AND MICROSCOPES TO STUDY THE STRUCTURE OF MATTER

Simulation of the decay of a Higgs Boson (LHC, CERN)

DESY Hamburg

investigation of the fundamental forces and constituents of matter

Accelerators are at the heart of high-energy photon sources and particle colliders

CUTTING-EDGE, HIGH-END SLOW-MOTION-CAMERAS AND MICROSCOPES TO STUDY THE STRUCTURE OF MATTER

Synchrotron photon sources, e.g. Free-Electron Lasers (FELs) investigation of processes on atomic and molecular scales

Applications beyond matter medical accelerators (e.g. cancer therapy) - material processing (e.g. food sterilization, welding) accelerator-driven reactors cargo scanning (e.g. for nuclear fuel)

Illustration of an FEL-pulse diffracting off a protein (XFEL, DESY)

Simulation of the decay of a Higgs Boson (LHC, CERN)

Particle colliders

investigation of the fundamental forces and constituents of matter

DEST Hamburg

Ø 12700 km

Google earth

European XFEL 3.4 km

FLASH 315 m

Google earth

PETRA III C 2.3 km

FLASH FEL facility 315 m long with ~100 m 1.2 GeV SRF accelerator

DESY

Google earth

MODUL 6

What defines the scale length of the accelerator?

LIMITS OF CONVENTIONAL TECHNOLOGY

Working principle of an RF-cavity

~1 m long TESLA-type superconducting structure

What defines the scale length of the accelerator?

LIMITS OF CONVENTIONAL TECHNOLOGY

Working principle of an RF-cavity

Alternating longitudinal electric field Ez

Standing microwave (1.3 GHz)

The goal: electrons with well defined energy gain

Kinetic energy gain: $\Delta W_{kin} = eE_z d$

Accelerating field strength limited to ~50 MV/m by electrical breakdown

~1 m long TESLA-type superconducting structure

Energy increase can only be achieved by longer acceleration distances!

What defines the scale length of the accelerator?

_IMITS OF CONVENTIONAL TECHNOLOGY

Ring accelerators for electrons?

Advantage: the same (short) acceleration section may be used multiple times

Disadvantage: the energy loss by synchrotron radiation limits the maximum energy

- (and achievable beam quality: insufficient for X-ray FELs...)

FLASH FEL facility 315 m long with ~100 m 1.2 GeV SRF accelerator

DESY

Google earth

MODUL 6

Plasma wakefield accelerator 0.07 m

delivers ~1 GeV, a similar energy as FLASH → Leemans et al., Nature Physics 2, 696 (2006)

Particle-beam driven "Plasma wakefield acceleration" PWFA

M. Schnell et al., Nat. Comm. 4, 2421 (2013)

Basics of plasma-based particle acceleration

Wake excitation

Basics of plasma-based particle acceleration

Wake excitation

Particle injection

Basics of plasma-based particle acceleration

Just to make sure, you are paying attention...

What is the color of the surfers pants?

Simple fluid model for plasma-wave excitation

Transverse electron momentum (from equation of motion)

Longitudinal electron momentum (from equation of motion)

Continuity equation

Electro-magnetic wave equation

Poisson's equation

 $\gamma \beta_{\rm y} = a_0$ $\frac{d}{dt}\left(\gamma\beta_{\mathbf{x}}\right) = c\left(\frac{\partial\phi_{0}}{\partial x} - \frac{1}{2\gamma}\frac{\partial a_{0}^{2}}{\partial x}\right)$ $\frac{\partial n_{\rm e}}{\partial t} + c \frac{\partial}{\partial x} \left(n_{\rm e} \beta_{\rm x} \right) = 0$ $\frac{\partial^2 a_0}{\partial t^2} - c^2 \frac{\partial^2 a_0}{\partial y^2} = -\omega_{\rm p}^2 \frac{n_0 a_0}{\gamma}$ $\frac{\partial^2 \phi_0}{\partial r^2} = \frac{\omega_{\rm p}^2}{c^2} \left(n_0 - 1 \right)$

Transformation into a co-moving frame with

 $\tau = t$ and $\xi = x - v_{g}t$ and quasi-static approximation

Resulting differential equation for scalar potential

$$\frac{\partial^2 \phi_0}{\partial \xi^2} = \frac{\omega_p^2}{c^2} (n_0 - 1)$$

$$= \frac{\omega_p^2}{c^2} \gamma_g^2 \left[\frac{\beta_g (1 + \phi_0)^2}{\sqrt{(1 + \phi_0)^2 - \frac{1 + a_0^2}{\gamma_g^2}}} - 1 \right]$$
with $\beta_g \to 1$

$$\frac{\partial^2 \phi_0}{\partial \xi^2} = \frac{\omega_p^2}{2c^2} \left[\frac{1 + a_0^2}{(1 + \phi_0)^2} - 1 \right]$$

Wakefield properties in transverse dimensions

Laser envelope **Electron density modification** Longitudinal electric field 30 25 20 y [c / ω_p] 15 10 5 0 46 48 50 42 44 40 **z** [**c** / ω_p]

> Longitudinal fields of a quasi-linear plasma wave

зd ín space 3d in momentum

Jens Osterhoff | forward.desy.de | Summer Student Programme DESY | August 19, 2019 | Page 24

Wakefield properties in transverse dimensions

Fraction of plasma wavelength usable for electron acceleration?

3d in space 3d in momentum

Wakefield properties in transverse dimensions

from C.B.Schroeder et al., PRSTAB 13, 101301 (2010)

зd ín space зd ín momentum

The LWFA process can be complex

- laser self-focussing
- laser self-compression
- wave breaking
- beam hosing
- beam loading
- ...

3D particle-in-cell (PIC) simulation

Cold, non-relativistic wave breaking limit

$$E_0 = \frac{cm_e\omega_p}{e}$$

Cold, relativistic wave breaking limit

$$E_{wb} = E_0 \sqrt{2(\gamma_\phi - 1)}$$

Temperature and transverse dynamics require further modifications...

60
40
20 Initial laser p
$$a_0 = 2$$

 $\lambda_c = 800 \text{ m}$
 $\Delta \tau = 25 \text{ fs FW}$
 $w_0 = 23 \text{ µm FW}$
Plasma der
 $n_p \le 5 \times 10^{18} \text{ c}$

x₃ [c / w_p]

Time = $583.44 [1/w_p]$

Longitudinal phase space for test particles in wakefield

Hamiltonian: h(a)

$$(\xi, p_0) = \sqrt{1 + p_0^2 + a_0^2(\xi)} - \phi_0(\xi) - \beta_p p_0 = h_0$$

confer T. Esirkepov et al., Phys. Rev. Lett. 96, 014803 (2006)

Ionization for injection control

ionization of dopant gas near laser-pulse peak intensity
 dopant concentration to tune injected charge and beam loading

idea: D.Umstadter *et al.*, Phys. Rev. Lett. **76**, 2073 (1996) *demonstration:* A.Pak *et al.*, Phys. Rev. Lett. **104**, 025003 (2010) C.McGuffey *et al.*, Phys. Rev. Lett. **104**, 025004 (2010)

Colliding lasers for injection control

- > colliding lasers create strong ponderomotive kick
- > control laser parameters (pol., λ , a_0) and overlap position for injection control

demonstration:

Jens Osterhoff | forward.desy.de | Summer Student Programme DESY | August 19, 2019 | Page 29

J.Faure et al., Nature 444, 737 (2006)

- > colliding lasers create strong ponderomotive kick

Jens Osterhoff | forward.desy.de | Summer Student Programme DESY | August 19, 2019 | Page 29

Density slopes for injection control

300 100 50 30 d^{0} $\xi \lambda_{
m p}^{-1}$ ဗ္ဂ Α $-1 \approx -\frac{\xi}{2n_e} \frac{dn_e}{dz}$ (*шп*), 12001400 1600 > phase velocity of plasma wake reduced on density down-slope > velocity of electrons may exceed v_{Φ} , leads to trapping 8 > trapping in multiple buckets possible 210 410 X(µm)

idea: S.Bulanov et al., Phys. Rev. E 58, R5257 (1998) demonstration: C.G.R.Geddes et al., Phys. Rev. Lett. 100, 215004 (2008)

Jens Osterhoff | forward.desy.de | Summer Student Programme DESY | August 19, 2019 | Page 30

Laser-pulse

center

ξt

LASER DIFFRACTION: MITIGATED BY TRANSVERSE PLASMA DENSITY TAILORING (PLASMA CHANNEL)

Capillary discharge plasma waveguides

- Plasma fully ionized for t > 50 ns
- After t ~ 80 ns plasma is in quasi-equilibrium: Ohmic heating is balanced by conduction of
- Ablation rate small: cap. lasts for $>10^6$ shots

LASER DIFFRACTION: MITIGATED BY TRANSVERSE PLASMA DENSITY TAILORING (PLASMA CHANNEL)

In this example: $Z_{R} = 2 \text{ mm}$, guiding over 16 mm, guiding efficiency > 90 %

Karsch, Osterhoff *et al.*, New J. Phys. **9**, 415 (2007) D.J. Spence *et al.*, J. Phys. B **34**, 4103 (2001)

Capillary discharge plasma waveguides

- Plasma fully ionized for t > 50 ns
- After t ~ 80 ns plasma is in quasi-equilibrium:
 Ohmic heating is balanced by conduction of heat to wall
- Ablation rate small: cap. lasts for $>10^6$ shots
- $n_p \approx 10^{17}$ 10^{19} cm⁻³

ELECTRON-LASER DEPHASING: MITIGATED BY LONGITUDINAL PLASMA DENSITY TAILORING (PLASMA TAPER)

Constant density plasma

Laser pulse, plasma wave travel with $v_{\Phi} = v_g < c$ Electrons travel with $v_e \approx c > v_{\Phi}$

 \Rightarrow they outrun the accelerating field structure

ELECTRON-LASER DEPHASING: MITIGATED BY LONGITUDINAL PLASMA DENSITY TAILORING (PLASMA TAPER)

LASER DEPLETION: ENERGY LOSS INTO PLASMA WAVE EXCITATION

Coefficients determined from PIC simulations in the quasi-linear regime ($a_0 = 1.5$)

Staging required for higher electron energies

confer C.B.Schroeder *et al.*, PRSTAB **13**, 101301 (2010)

Straw-man design of a TeV-class LWFA-based linear collider

Efficiency and average-power requirements demand a quantum leap in laser technology

Modern 1 PW lasers: « 1% wallplug efficiency, ~100 W average power → Current roadblock for LWFA colliders.

confer C.B. Schroeder et al., Phys. Rev. STAB 13, 101301 (2010)

confer B. Shadwick et al., Phys. Plasmas 16, 056704 (2009)

Efficiency and average-power requirements demand a quantum leap in laser technology

→ Current roadblock for LWFA colliders.

What makes beam-driven plasma accelerators attractive?

VS. LASER-BASED WAKEFIELD ACCELERATORS

Considerable disadvantage

Advantages

Laser engineering revolution required

Plasma target engineering

- > Particle beams may be produced at high average power (up to MWs) - ~100 W average power of state-of-the-art TW to PW laser technology
- > Particle-beam production is efficient (~10 % from the wall plug)
 - $\ll 1 \%$ wall-plug efficiency for high-intensity lasers
- > Driver-beam stability (can be << 1 %)
 - high peak-power lasers fluctuate ~1% in intensity
- > No dephasing of plasma wakefield and electron beam, wave breaking difficult
- - -

> Require a large conventional accelerator to produce driver, therefore cannot be as compact

- LWFA: pulse velocity less than c, electrons outrun wake, wave breaking can lead to dark current > Diffraction lengths longer than energy depletion scales for beams of µm normalized emittance diffraction length of laser pulse shorter than depletion distances \rightarrow limits witness beam energy

The next-generation plasma wakefield accelerator -**FLASH**Forward At DESY

generate usable beams in plasma with low emittance (≤ 100 nm) at > 1.5 GeV

The next-generation plasma wakefield accelerator -**FLASH**Forward At DESY

Summary

- > Accelerators are at the heart of most photon science and particle physics experiments, but are large installations
- > Plasma wakefield technology offers a promising path to compact accelerators with > 10 GV/m fields
- > Two alternative driver technologies: laser- and beam-excited plasma wakes
- > Common goal:
 - plasma accelerator research \rightarrow usable plasma accelerators
- > Hope: miniaturization of accelerators leads to
 - significant cost reduction
 - widespread proliferation of compact accelerator technology
 - beams with new and extreme properties

> Plasmas may have a revolutionary influence on accelerator applications