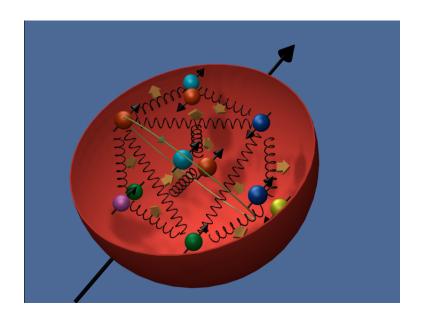
Report from HERMES


Sergey Yaschenko DESY Zeuthen

for the HERMES collaboration

Study of spin structure of the nucleon at HERMES

- Longitudinal Spin/Momentum Structure, Hadronization
- Transverse Spin/Momentum Structure → Transversity, TMDs
- DVCS, Exclusive Meson Production → GPDs, "Nucleon Tomography"
- Strange-Baryon Production

Publications since the last PRC

Four papers published (accepted for publication)

- Spin density matrix elements in exclusive ρ⁰ electroduction on ¹H and ²H targets at 27.6 GeV beam energy, EPJC 62 (2009) 659-694, arXiv:0901.0701 (hep-ex) and DESY-08-203
- Observation of the naive-T-odd Sivers effect in deep-inelastic scattering Phys. Rev. Lett. 103 (2009) 152002, arXiv:0906.3918 and DESY-09-089
- Exclusive ρ⁰ electroproduction on transversely polarized protons, Phys. Lett. B679 (2009) 100-105, arXiv:0906.5160 (hep-ex) and DESY-09-094
- Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process in measurements on a hydrogen target, JHEP (in press), arXiv:0909.3587 (hep-ex) and DESY-09-143

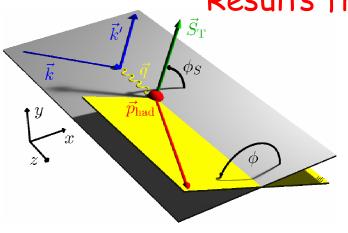
Five papers submitted to journals

- Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei, submitted to Phys. Lett. B, arXiv:0906.2478 (hep-ex) and DESY-09-082
- Single-spin azimuthal asymmetry in exclusive electroproduction of π^+ mesons on transversely polarized protons, submitted to Phys. Lett. B, arXiv:0907.2596 (hep-ex) and DESY-09-106
- Search for a two-photon exchange contribution to inclusive deep-inelastic scattering, submitted to Phys. Lett. B, arXiv: 0907.5369 and DESY-09-117
- Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on an unpolarized deuterium target, arXiv: 0911.0095 and DESY-09-189
- Nuclear-mass dependence of beam-helicity and beam-charge azimuthal asymmetries in DVCS, arXiv: 0911.0091 and DESY-09-190

Three papers near submission

Publications since the last PRC

Four papers published (accepted for publication)


- Spin density matrix elements in exclusive ρ⁰ electroduction on ¹H and ²H targets at 27.6 GeV beam energy, EPJC 62 (2009) 659-694, arXiv:0901.0701 (hep-ex) and DESY-08-203
- Observation of the naive-T-odd Sivers effect in deep-inelastic scattering Phys. Rev. Lett. 103 (2009) 152002, arXiv:0906.3918 and DESY-09-089
- Exclusive ρ^0 electroproduction on transversely polarized protons, Phys. Lett. B679 (2009) 100-105, arXiv:0906.5160 (hep-ex) and DESY-09-094
- Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process in measurements on a hydrogen target, JHEP (in press), arXiv:0909.3587 (hep-ex) and DESY-09-143

Five papers submitted to journals

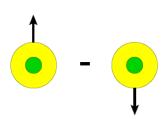
- Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei, submitted to Phys. Lett. B, arXiv:0906.2478 (hep-ex) and DESY-09-082
- Single-spin azimuthal asymmetry in exclusive electroproduction of π^+ mesons on transversely polarized protons, submitted to Phys. Lett. B, arXiv:0907.2596 (hep-ex) and DESY-09-106
- Search for a two-photon exchange contribution to inclusive deep-inelastic scattering, submitted to Phys. Lett. B, arXiv: 0907.5369 and DESY-09-117
- Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on an unpolarized deuterium target, arXiv: 0911.0095 and DESY-09-189
- Nuclear-mass dependence of beam-helicity and beam-charge azimuthal asymmetries in DVCS, arXiv: 0911.0091 and DESY-09-190

Three papers near submission

Results from transverse target running

Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering

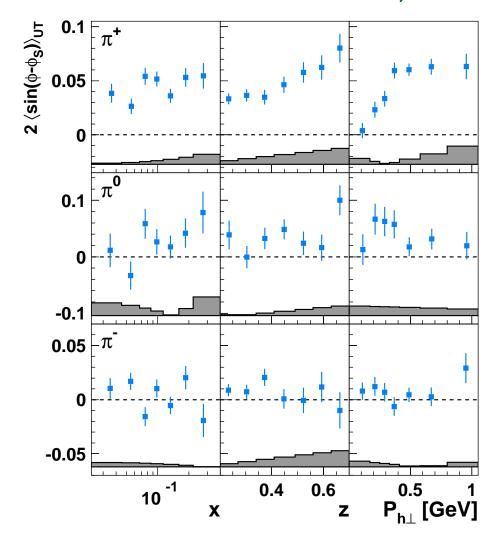
$$\Delta \sigma_{UT}(\phi, \phi_S) \approx \frac{2 \langle \sin(\phi - \phi_S) \rangle_{UT}^h}{2 \langle \sin(\phi - \phi_S) \rangle_{UT}^h} \sin(\phi - \phi_S) + 2 \langle \sin(\phi + \phi_S) \rangle_{UT}^h \sin(\phi + \phi_S) \rangle_{UT}^h$$

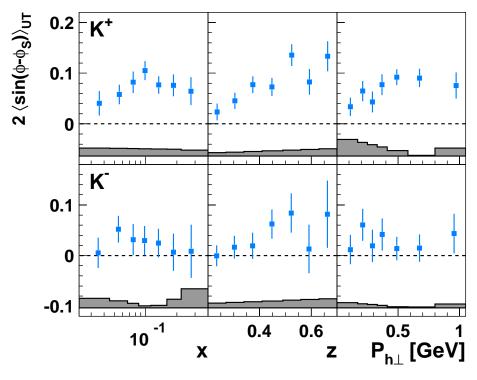

Sivers moment

$$\propto f_{1T}^{\perp q}(x)D_1^q(z)$$

Collins moment

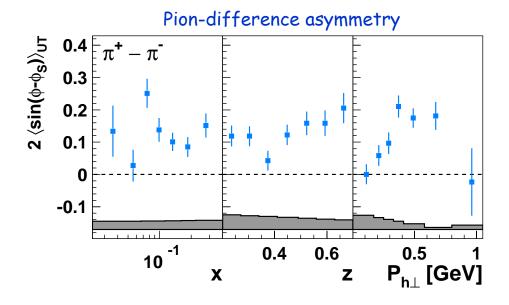
$$\propto h_1(x)H_1^{\perp q}(z)$$

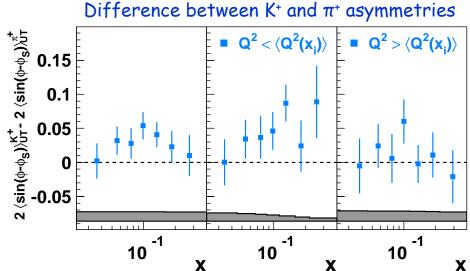

Sivers distribution function



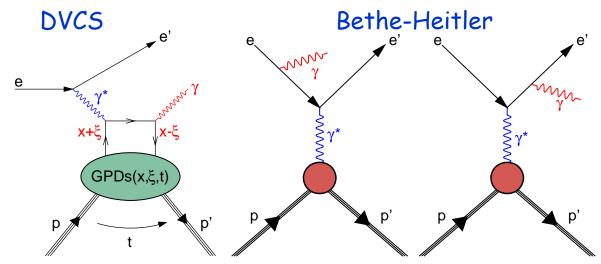
- Chiral-even and naive T-odd transverse momentum dependent function
- \bullet Describes correlation between intrinsic quark p_T and transverse nucleon spin
- Non-zero Sivers DF requires non-vanishing orbital angular momentum

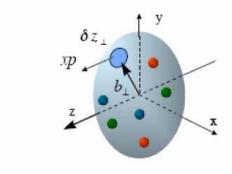
Sivers asymmetries for pions and kaons


Published: Phys. Rev. Lett. 103 (2009) 152002

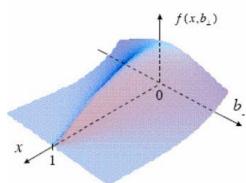


- Significantly positive for π^+ and K^+
 - Implies non-zero orbital angular momentum of quarks
 - Suggests large and negative Sivers function for u-quarks
- Consistent with zero for π -
 - Require cancellation effects, opposite sign for u- and d-quark Sivers functions


Pion-difference Sivers asymmetry and difference between K^+ and π^+ Sivers asymmetries



- $\begin{array}{l} \bullet \quad \text{Pion-difference asymmetry} \quad A_{UT}^{\pi^+-\pi^-}(\phi,\phi_S) \equiv \frac{1}{\left|\mathbf{S}_{\mathsf{T}}\right|} \frac{\left(\sigma_{U\uparrow}^{\pi^+} \sigma_{U\uparrow}^{\pi^-}\right) \left(\sigma_{U\downarrow}^{\pi^+} \sigma_{U\downarrow}^{\pi^-}\right)}{\left(\sigma_{U\uparrow}^{\pi^+} \sigma_{U\uparrow}^{\pi^-}\right) + \left(\sigma_{U\downarrow}^{\pi^+} \sigma_{U\downarrow}^{\pi^-}\right)} \propto \frac{\left(f_{IT}^{\perp,d_{_{\boldsymbol{V}}}} 4f_{IT}^{\perp,u_{_{\boldsymbol{V}}}}\right)}{\left(\sigma_{U\uparrow}^{\pi^+} \sigma_{U\uparrow}^{\pi^-}\right) + \left(\sigma_{U\downarrow}^{\pi^+} \sigma_{U\downarrow}^{\pi^-}\right)} \end{array}$
 - Helps to isolate the valence-quark Sivers function
 - Assumption of charge-conjugation and isospin symmetry among pion fragmentation
- Difference between K⁺ and π^+ asymmetries $\pi^+ = |u\overline{d}\rangle$ $K^+ = |u\overline{s}\rangle$
 - Possible significant role of sea quarks
 - Higher-twist effects in kaon production might also contribute


Access to Generalized Parton Distributions (GPDs) via Deeply Virtual Compton Scattering (DVCS)

DVCS and Bethe-Heitler: the same initial and final state,
 Bethe-Heitler dominates at HERMES kinematics

- GPDs include knowledge about Parton Distribution Functions and Form Factors
- Four chiral-even GPDs for proton in leading order and leading twist for each quark flavor H_q , \widetilde{H}_q , E_q , \widetilde{E}_q
- GPDs can provide access to the quark total angular momentum via Ji relation

$$\boldsymbol{J_q} = \lim_{t \to 0} \int_{-l}^{l} dx \, x \Big[\boldsymbol{H_q} \big(\boldsymbol{x}, \boldsymbol{\xi}, t \big) + \boldsymbol{E_q} \big(\boldsymbol{x}, \boldsymbol{\xi}, t \big) \Big]$$
 Report from HERMES

Azimuthal asymmetries in DVCS

Cross section

$$\sigma_{LU}(\phi; P_B, C_B) = \sigma_{UU}[1 + P_B A_{LU}^{DVCS} + C_B P_B A_{LU}^I + C_B A_C]$$

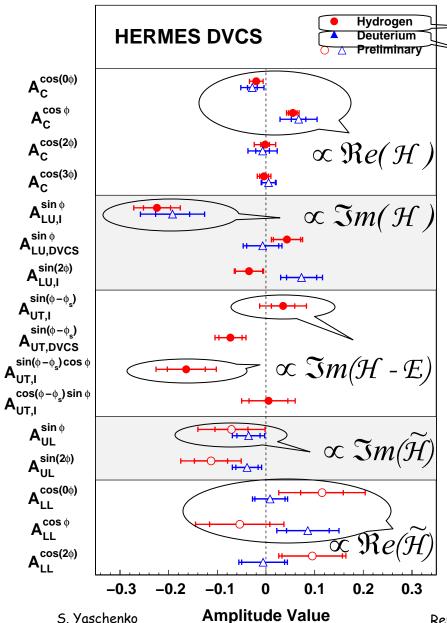
Beam-charge asymmetry

$$A_{C}(\phi) = \frac{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) - \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)} = -\frac{1}{D(\phi)} \frac{x_{B}^{2}}{y} \sum_{n=0}^{3} \frac{c_{n}^{I} \cos(n\phi)}{y}$$

Charge-difference beam-helicity asymmetry

$$A_{LU}^{I}(\phi) = \frac{\left(\sigma^{+\rightarrow} + \sigma^{-\leftarrow}\right) - \left(\sigma^{+\leftarrow} + \sigma^{-\rightarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{-\leftarrow}\right) + \left(\sigma^{+\leftarrow} + \sigma^{-\rightarrow}\right)} = -\frac{1}{D(\phi)} \frac{x_B^2}{Q^2} \sum_{n=1}^{2} s_n^{I} \sin(n\phi)$$

Charge-averaged beam-helicity asymmetry

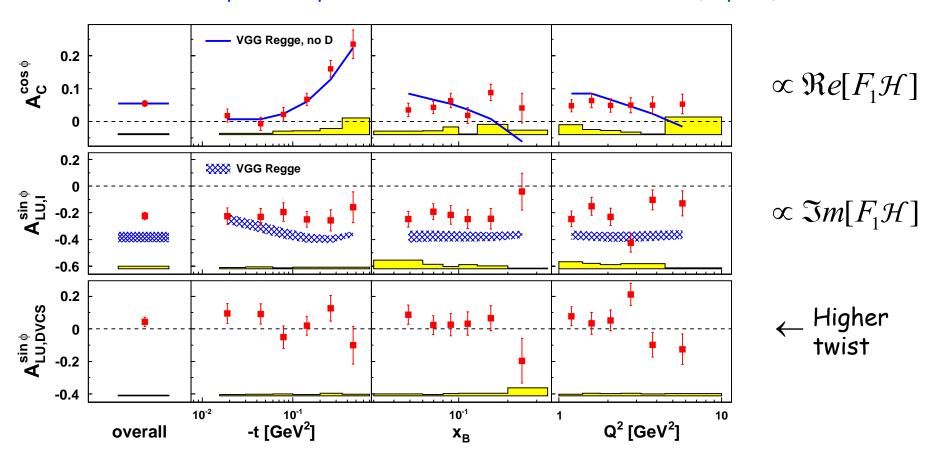

$$A_{LU}^{DVCS}(\phi) = \frac{\left(\sigma^{+\rightarrow} - \sigma^{+\leftarrow}\right) - \left(\sigma^{-\leftarrow} - \sigma^{-\rightarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)} = \frac{1}{D(\phi)} \cdot \frac{x_B^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)}{Q^2} s_1^{DVCS} \sin(\phi)$$

- Measurements of these beam-helicity asymmetries allow to separate contributions from DVCS and interference term
- This separation is impossible in measurements of single-charge beam-helicity asymmetry

$$A_{LU}(\phi) = \frac{\sigma^{\rightarrow} - \sigma^{\leftarrow}}{\sigma^{\rightarrow} + \sigma^{\leftarrow}}$$

S. Yaschenko

Central analysis topic since the last PRC DVCS asymmetries and connections with GPDs

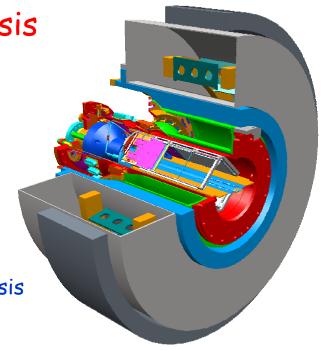


Accepted by JHEP, arXiv:0909.3587 (hep-ex)
Submitted, arXiv: 0911.0095 (hep-ex)

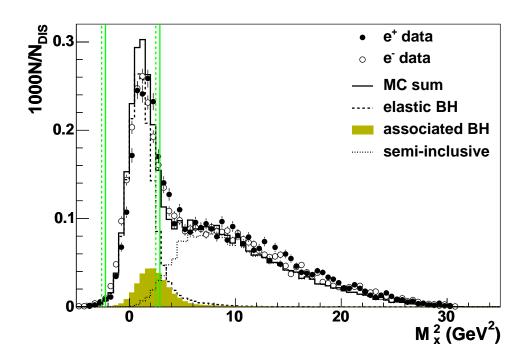
- Beam charge asymmetryGPD H
- Beam helicity asymmetryGPD H
- Transverse target spin asymmetry
 JHEP 06 (2008) 066, arXiv:0802.2499
 GPD E
- Longitudinal target spin asymmetry
 GPD H
- Double spin asymmetryGPD H

Results on beam-charge and beam-helicity asymmetry amplitudes in DVCS

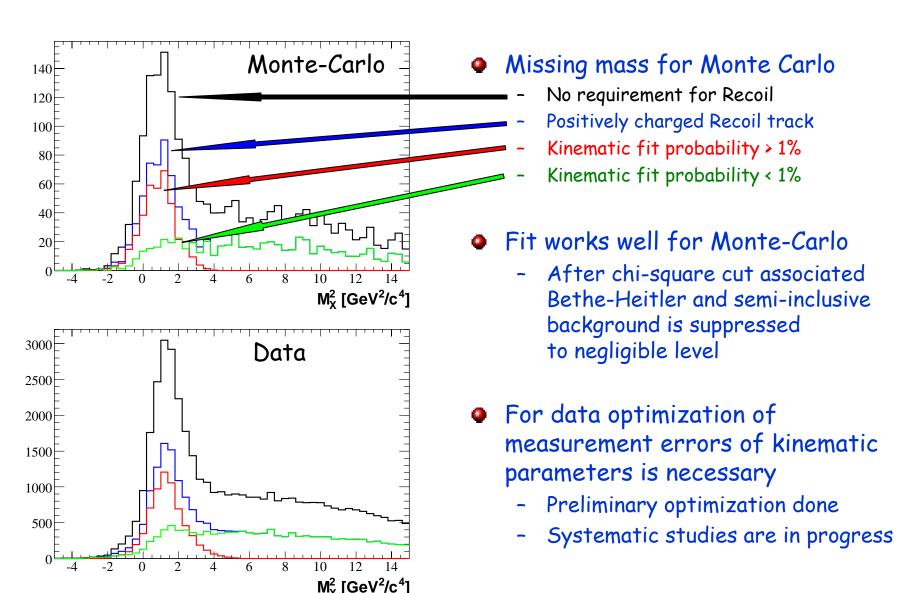
Accepted for publication in JHEP, arXiv:0909.3587 (hep-ex)


- Comparisons with GPD model, Vanderhaeghen, Guichon, Guidal Phys. Rev. D60 (1999) 094017, Prog. Part. Nucl. Phys. 47 (2001) 401
- Resonance fraction from $ep \rightarrow e\Delta^+ \gamma$ is about 12%

Recoil Detector analysis


- Technical development
 - Calibration SSD, SFT, PD done
 - Detector efficiency done
 - Particle Identification done
 - Tracking done
 - Refinements possible after input from physics analysis

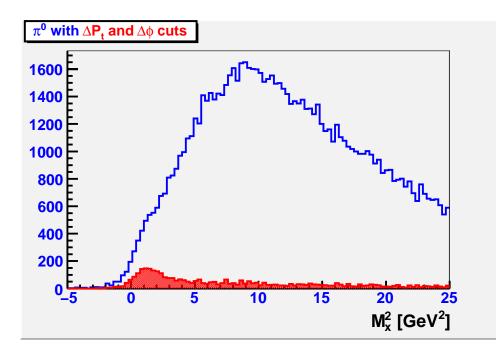
- Kinematic fitting is developed and tested on DVCS Monte Carlo and data,
 will be applied with modifications for other exclusive processes
- Physics analysis
 - Members of the Recoil group moved to physics analysis of DVCS and exclusive meson production processes
- Recoil Detector publication in preparation

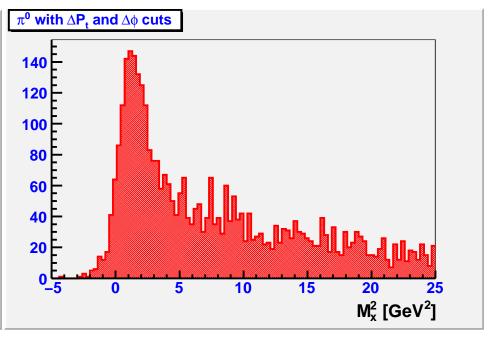


Event selection, uncertainties and corrections before the Recoil Detector installation

- Scattered electron and photon are detected in the Forward Spectrometer
- Recoil proton is undetected
- Identification by missing mass technique (ep \rightarrow e' γX)
- Semi-inclusive corrected as dilutions for charge dependent asymmetries
- Associated Bethe-Heitler ep \rightarrow e' Δ + γ ~12% stays part of the signal

DVCS event selection with the Recoil detector using kinematic fitting



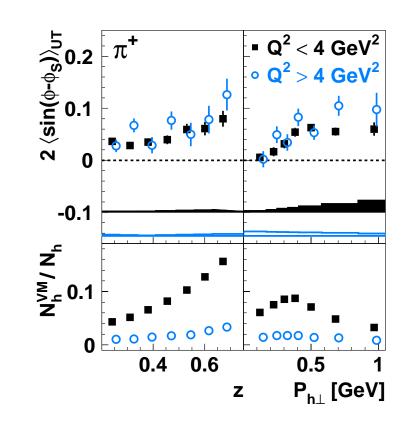

First signal of exclusive π^0 production at HERMES

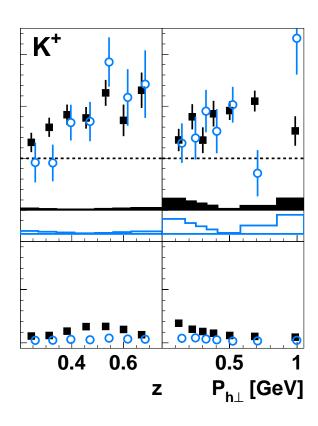
- Exclusive π^0 process can provide access to chiral-even and chiral-odd GPDs
- Impossible without recoil proton detection
- After a cut on the difference between transverse momentum and ϕ angle of missing particle and measured Recoil proton is applied, clear signal is observed

Recoil proton required

Cuts on momentum and angle difference applied

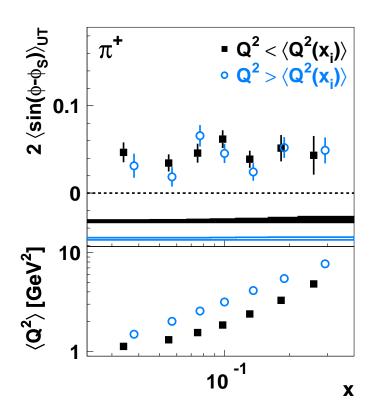
15

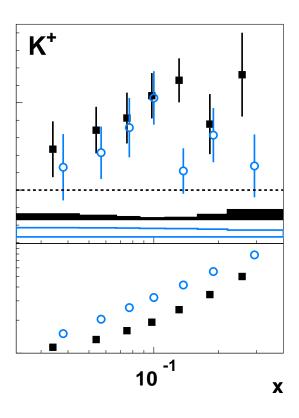

Summary



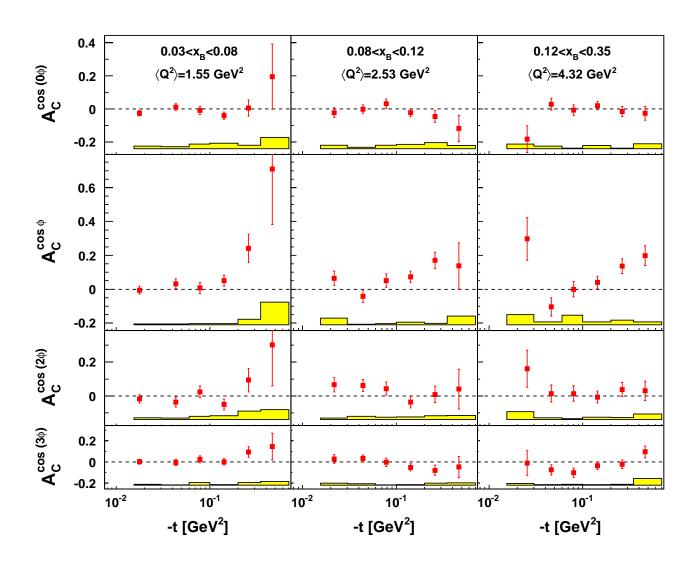
- Since the last PRC meeting
 - Four papers published
 - Five papers submitted
 - Four physics results released and presented at conferences
- Many results are expected to be finalized soon
- Recoil Detector physics analysis underway
 - Transition from technical development stage to physics analysis finished
 - Publication about the detector in preparation

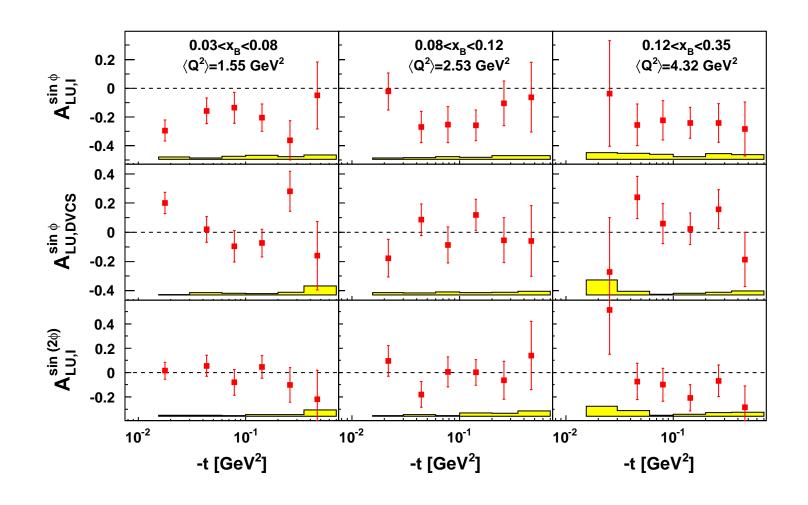
Backup slides


Sivers amplitudes for π^+ and K^+ for different ranges in \mathbb{Q}^2

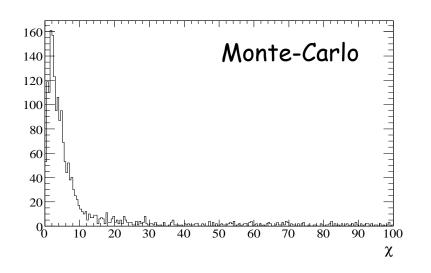


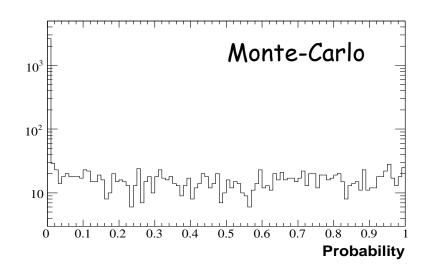
- \bullet Examine the influence of exclusive vector-meson decay and other possible $1/Q^2$ suppressed contributions
- No visible influence on the asymmetries

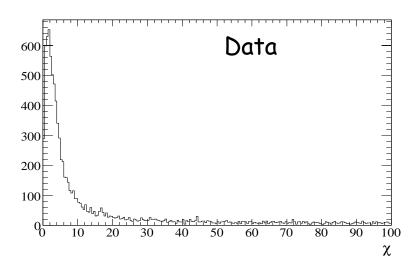

Sivers amplitudes for π^+ and K^+ for different ranges in \mathbb{Q}^2

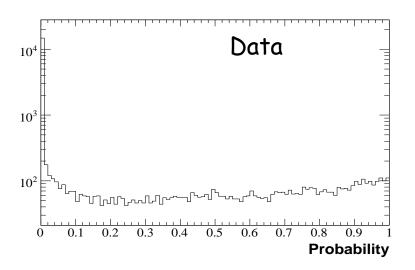


- No significant change of asymmetries for Q² ranges change by a factor of 1.7
- Fully consistent for two Q^2 regions for π^+
- Hint of systematically smaller K⁺ asymmetries in the large Q² region


Beam charge asymmetry amplitudes in DVCS




Beam helicity asymmetry amplitudes in DVCS



Kinematic fitting for DVCS

Released results since the last PRC meeting

- Direct extraction of helicity amplitude ratios in exclusive ρ^0 electroproduction
- Study of A_T , A_2 and g_2
- The other (than Sivers and Collins) amplitudes in the Fourier decomposition of the transverse single-spin asymmetry on transversely polarized protons
- Exclusive leptoproduction of real photons on a longitudinally-polarised hydrogen target