

Update on Kinematic Fits

C. Sander

Susy Group Meeting - Hamburg - 29th September 09

Proof of Principle: Semi-Leptonic $tar{t}$

- Higher statistics: 200k events
- 13355 semi-leptonic events after acceptance cuts
- 12979 events converge forLM technique

Figure 2: p_T resolution of reconstructed unmeasured neutrino in semileptonic $t\bar{t}$ events

Figure 3: ϕ resolution of reconstructed unmeasured neutrino in semileptonic $t\bar{t}$ events

Fit Probability

- Only events are shown, for which best combination is correct combination → systematic shift to larger values
- Difference for GA vs. LM probability at largest values >0.8. Reason is different treatment of constraints:
 - LM: no contribution to χ^2 if constraint is fulfilled within some limits
 - GA: Additional contribution to X² from not perfect fulfilled constraints. In case of momentum balance, true momentum balance is broken (~2 GeV)
 → deviation from flat distribution

Figure 4: Fit probability for semileptonic $t\bar{t}$ events.

Is this clear enough?

Results for SUSY Events

Figure 6: p_T resolution of reconstructed unmeasured neutralinos

Figure 7: ϕ resolution of reconstructed unmeasured neutralinos

- Better "convergence" rate and resolution for GA
- Fit probability for signal (and signal-like) processes reasonable flat

Figure 8: Fit probability for chosen event hypothesis.

Angular Distributions

• Background
• Signal

1.5

2.5

1.5

2

1.5

0.5

1.0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

cos θ * (q̄)

Figure 9: Angular distribution of decay products in rest frame of χ_1^{\pm}/χ_2^0 .

Figure 10: Angular distribution of decay products in rest frame of squark.

$$LR = \prod_{i=1}^{N} \frac{\mathcal{L}_{\text{sig}}(\cos \theta_i^*)}{\mathcal{L}_{\text{sig}}(\cos \theta_i^*) + \mathcal{L}_{\text{bg}}(\cos \theta_i^*)}$$

- Introduction of model dependence: identification of bg events
- In case of bg domination: use angular distribution of all events?

Current implementation: Improvement of ~10% (120 → 132: best is correct combination)

- Only signal events are shown, for which best is correct combination (no combinatorial background)
- Systematic shift / tail of "most likely" region to larger chargino masses

$$L_{\text{all events}} = \left(\prod_{i=1}^{N} p_i\right)^{\frac{1}{N}} = \exp\left(\frac{1}{N}\sum_{i=1}^{N} \log p_i\right) \times \text{Fractional event count} = P$$

Figure 11: \mathcal{P} of signal events for which the best hypothesis is the right one. The maximum is near the true masses (see Table 1).

Explanation of Shift / Tail?

Figure 12: \mathcal{P} of all events. This distribution is dominated by background and its maximum is shifted away from the true masses.

Figure 13: Same distribution but with the background reduced by a factor of 50.

If the combinatorial and SUSY background is included, the maximum of \mathcal{P} is shifted towards significantly larger $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses, as can be seen in Figure 12. Similar decay topologies with heavier intermediate SUSY particles, e.g. $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ or $\tilde{\chi}_2^{\pm}$, can account for this. Another reason is, that for heavier mass hypotheses it easier to find a combination, which fulfill the constraints, since the phase space of allowed solutions is larger.