Compton Edge and Frequency doubling considerations

Ben King

b.king@plymouth.ac.uk

LUXE Web Meeting, 23/07/2019

- Update on increasing laser frequency
- Compton edge in short pulses

Assuming no losses in frequency conversion process (17.5 ${
m GeV}$ γ s):

ullet Clear advantage to increasing the frequency of the laser for intensities $\xi\lesssim 2$

Assuming realistic losses in frequency conversion process:

• Advantage of frequency-increasing, is neutralised by losses.

Integrating each case over $35\,\mathrm{fs}$ pulse (shown here e.g. second harmonic):

Integrating over 35 fs pulse assuming no losses:

• Even more of an advantage of frequency-increasing

Integrating over 35 fs pulse assuming realistic losses:

• Advantage of frequency-increasing to 2ω is neutralised by losses, but not to $3\omega.$

 For a given electron lightfront momentum (energy and angle), the pulse form determines the Compton spectrum

 For a given electron lightfront momentum (energy and angle), the pulse form determines the Compton spectrum

$$\mathsf{P} \quad = \quad -\frac{\alpha}{\eta_e} \frac{\mathsf{i}}{2\pi} \int_0^1 \mathsf{d} s \, \int \frac{\mathsf{d} \varphi \mathsf{d} \varphi'}{\varphi - \varphi'} \, \mathsf{e}^{\frac{\mathsf{i} \, s}{2\, \eta_e(1-s)} \, \theta \mu(\theta)} \left\{ 1 - \frac{\left[\mathsf{a}(\varphi) - \mathsf{a}(\varphi') \right]^2}{2} \left(1 + \frac{\mathsf{s}^2}{2(1-s)} \right) \right\},$$

$$s=rac{\eta_{\gamma}}{\eta_{e}}; \qquad heta=arphi-arphi'; \qquad \mu(heta)=1-\langle \xi^{2}
angle-\langle \xi
angle^{2}$$

$$\xi = 0.5$$

$$\xi = 0.8$$

$$\xi = 1$$

$$\xi = 1.5$$

 $\tau = 50\,\mathrm{fs}$

 $\tau = 35\,\mathrm{fs}$

 $\tau = 17\,\mathrm{fs}$

 $au=8.5\,\mathrm{fs}$

 $\tau = 5 \, \mathrm{fs}$

 $\tau = 5\,\mathrm{fs}$

- Compton-edge washed out in ultra-short pulses.
- To do: finite focus effects.