Likelihood ratio in many dimensions

Using neural networks for effective field theory

Jonas Rübenach Hamburg, 2019-07-12

Theory

Search for BSM physics at high energies

- Effective field theory (EFT)
 - Approximation for new physics at energies beyond the current scale

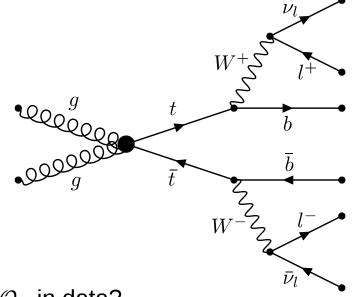
$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

- Wilson coefficient c_i
- Cut-off energy scale $\Lambda = 1 \,\, {\rm TeV}$
- EFT operator \mathcal{O}_i
- **Goal**: Set limits on c_i
 - Note: Generally no signal/background distinction possible due an interference term

Process

Top-quark pair production and decay

- Top-quark pair decaying into electrons or muons
- Adding only one EFT operator \mathcal{O}_{tG}
 - Introduces ggtt vertex and modifies top-gluon coupling
- Utilizing 23 "high-level" observables
- **Question**: Can we rule out the existence of \mathcal{O}_{tG} in data?



Likelihood ratio

How to probe for hypotheses

- Two different hypotheses, e. g. assuming two different values c_{tG} and c'_{tG} .
- Probability to observe specific values for a set of observables *x*

Likelihood ratio

٠

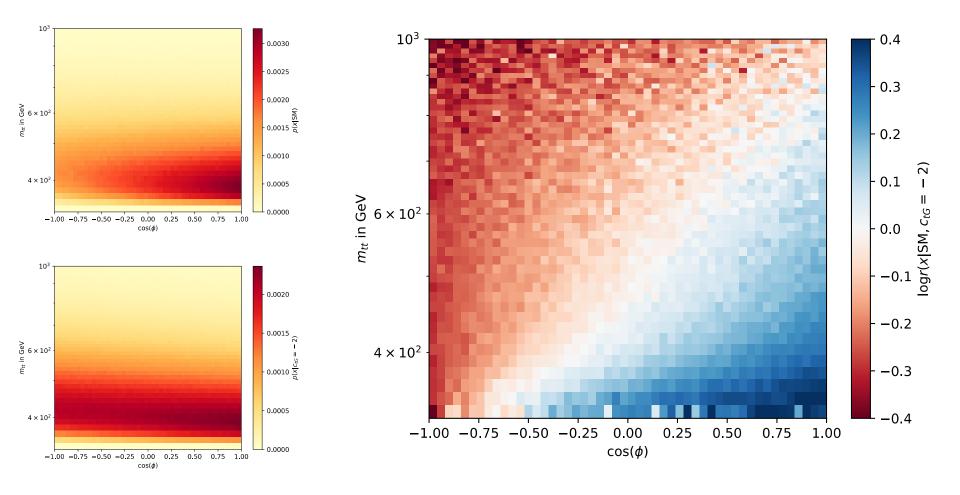
$$r(x|c_{tG}, c'_{tG}) = \frac{p(x|c_{tG})}{p(x|c'_{tG})}$$

 $p(x|c_{tG})$

- Provides most powerful tests
- Hard to compute, especially for high-dimensional *x*

Likelihood ratio

Low-dimensional example: 15 million MC events in 2D histograms



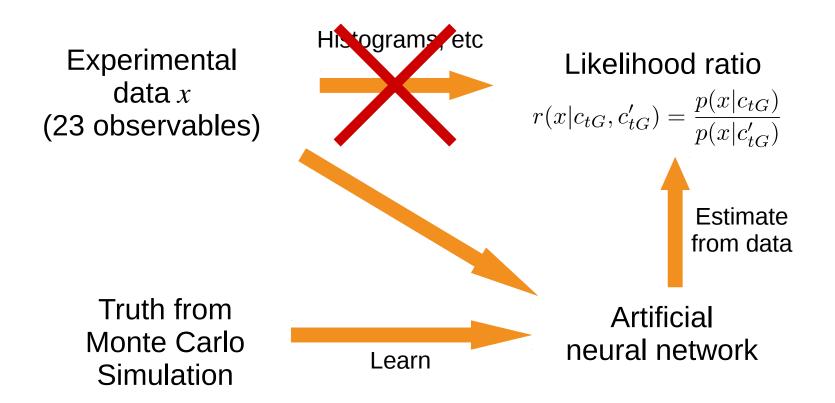
Described in a recent paper

A Guide to Constraining Effective Field Theories with Machine Learning

Johann Brehmer,¹ Kyle Cranmer,¹ Gilles Louppe,² and Juan Pavez³ ¹New York University, USA ²University of Liège, Belgium ³Federico Santa María Technical University, Chile (Dated: 30th July 2018)

- In a recent paper multiple approaches to estimate the likelihood ratio using neuronal networks were described (arXiv:1805.00020)
 - Classification
 - Regression
 - Local score and density estimation
- Works for a single EFT operator as well as for multiple ones
- Can also be used for hypothesis tests unrelated to EFT

Using Monte-Carlo truth to gain sensitivity



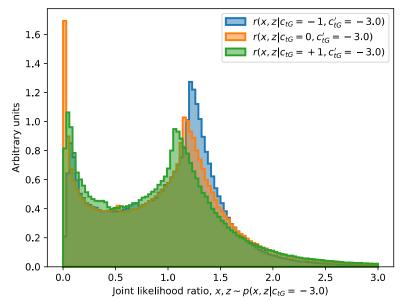
Training a neural network for a regression on the likelihood ratio

- Idea: Regress on the likelihood ratio using a neural network
 - High accuracy
 - Fast computation (in comparison to KDE or matrix element method)
- Problem: True likelihood ratio not available
 - Instead use joint-likelihood ratio, depending also on detector, shower and parton variables

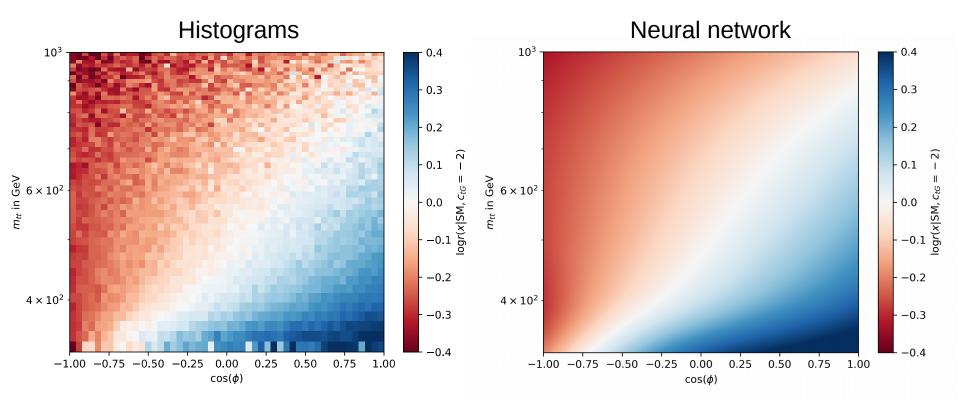
$$\begin{aligned} r(x, z_{\text{all}} | c_{tG}, c_{tG}') &= \frac{p(x, z_{\text{d}}, z_{\text{S}}, z_{\text{p}} | c_{tG})}{p(x, z_{\text{d}}, z_{\text{S}}, z_{\text{p}} | c_{tG}')} \\ &= \frac{p(x | z_{\text{d}}, z_{\text{S}}, z_{\text{p}}) p(z_{\text{d}} | z_{\text{S}}, z_{\text{p}}) p(z_{\text{s}} | z_{\text{p}}) p(z_{\text{p}} | c_{tG})}{p(x | z_{\text{d}}, z_{\text{S}}, z_{\text{p}}) p(z_{\text{d}} | z_{\text{S}}, z_{\text{p}}) p(z_{\text{s}} | z_{\text{p}}) p(z_{\text{p}} | c_{tG})} \\ &= \frac{p(z_{\text{p}} | c_{tG})}{p(z_{\text{p}} | c_{tG})} \end{aligned}$$

Training a neural network for a regression on the likelihood ratio

- Procedure
 - Compute joint-likelihood ratio from matrix elements of LO MC events using simple formula
 - Build a dense neural network with
 3 to 6 hidden layers, tanh
 activations
 - Input event observables, regress on joint-likelihood ratio
 - Use mean squared error as loss
- Analytically it can be shown that the loss is minimized by $r(x|c_{tG})$



2D example: Histogram vs neural network



Improvements for the neural network

- For limits, knowledge of $r(x|c_{tG},c'_{tG})$ for many c_{tG} -values is needed
 - Train independent neural network for every value or
 - "Parameterized model": Input c_{tG}-values alongside observables
 - Input more information from the Monte Carlo, notably the score *t*
 - Joint score is available and behaves analogous to the joint-likelihood ratio

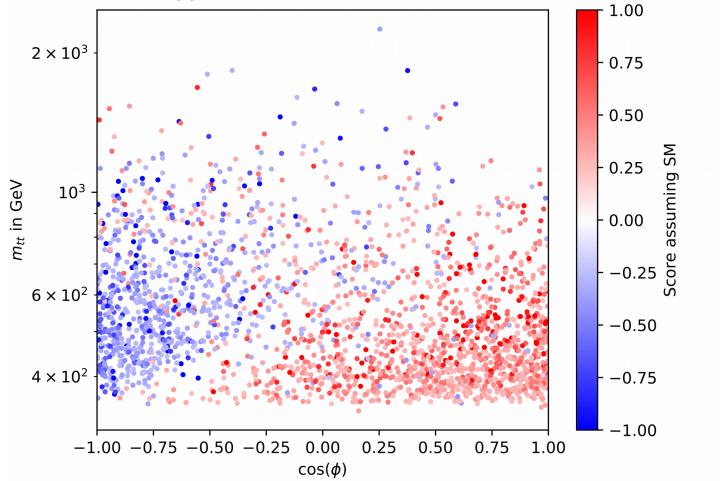
$$t(x|\hat{c}_{tG}) = \frac{\partial}{\partial c_{tG}} \log p(x|c_{tG})|_{\hat{c}_{tG}}$$
$$L = \text{MSE}_r + \alpha \text{MSE}_t$$

Improvements for the neural network

Joint score

 $t(x, z_{\text{all}} | \hat{c}_{tG}) = \frac{1}{p(z_{\text{p}} | \hat{c}_{tG})} \frac{\partial}{\partial c_{tG}} p(z_{\text{p}} | c_{tG}) |_{\hat{c}_{tG}}$

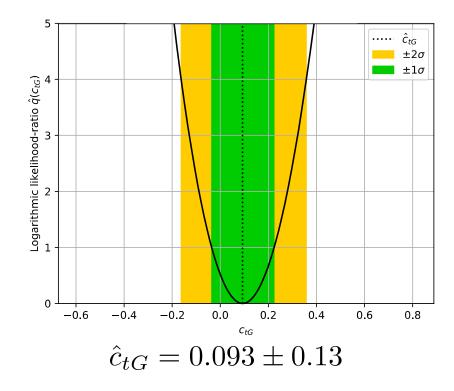
MC events with cut |t| > 0.25



Setting limits

Asymptotic properties of the likelihood ratio

- For a large number of events -2 log r is χ^2 -distributed
 - Minimum gives estimate for the true c_{tG} -value
 - Deviations from 0 would point to new physics
- Evaluate neural network for a set of events to get limits
 - In this example, an independent set of 5000 standard model MC events were used



Outlook

Pros

- Works for a large number of observables
- Observables can also be "low-level" four momenta
- Easily extendible for more operators
- Possible higher sensitivity than any histogram-based approach

Challenges for the future

- Tune hyperparamters
- Add detector simulation and nuance parameters
- Train on NLO simulation (instead of LO)
- Check performance on actual data
- Quality of the neural network itself hard to quantify