Relevance propagation of variables as applied in $H\to\tau\tau$

Teresa Lenz, Mareike Meyer, Alexei Raspereza for the HIG-18-032 team

based on paper by:

HELMHOLTZ RESEARCH FO

S. Wunsch, R. Friese, R. Wolf, and G. Quast, "Identifying the relevant dependencies of the neural network response on characteristics of the input space", Computing and Software for Big Science 2 (Sep, 2018) 5, doi:10.1007/s41781-018-0012-, arXiv:1803.08782

DESY CMS ML discussion, 12/07/2019

Analysis strategy

•

DESY.

- four most sensitive final states of $\tau\tau$ -pair studied: eµ, e τ_h , µ τ_h , $\tau_h\tau_h$
- loose baseline selection (trigger requirements, suppression of large backgrounds)
- multi-class NN with 2 signal classes (ggH, qqH) & several background classes (control regions)
- selection and validation of NN input variables based on 1D and 2D GoFs

Analysis strategy

- four most sensitive final states of ττ-pair studied: eµ, eτh, µτh, τhτh
- loose baseline selection (trigger requirements, suppression of large backgrounds)
- multi-class NN with 2 signal classes (ggH, qqH) & several background classes (control regions)
- selection & validation of NN input variables based on 1D and 2D GoFs relevance propagation

measurement of $H\to\tau\tau$ cross sections

- inclusively
- spilt by production mode (qqH, ggH)
- in different kinematic regimes (simplified template cross sections, STXS)

3

- many input variables possible
- number should be kept at manageable level, while most performant variables should be in
- input variables have to be well described by MC otherwise specifics of training set (MC) might be learned that are not present in test data
- also correlations of variables have to be well described (strength of NN to exploit correlations)

a.) check modeling of input variables using goodness of fit (GoF) test on 1D distributions

➡ discard variable with p-value < 5 %</p>

b.) GoF test on 2D distributions of all possible combinations of variables passing 1D GoF test to check modeling of correlations

→study those with many low p-values

0.2

0.1

b.) GoF test on 2D distributions of all possible combinations of variables passing 1D GoF test to check modeling of correlations

→study those with many low p-values

c.) check relevance of variables for NN

high relevance & several badly-modeled correlations:

- → perform further checks (e.g. modeling of variable in background classes)
- → can we keep the variable?

low relevance & several badly-modeled correlations:

discard variable

relevance of variables checked by Taylor expansion of NN output

Relevance propagation: idea

- relate output space of NN to input space
- identify characteristics of input space that have large influence on output for a given task
- decompose NN function into Taylor expansion in each element of the input space
- Taylor coefficients contain information about the sensitivity of the NN response to the inputs
- dependence on phase space: mean of absolute values of Taylor coefficients evaluated for all elements of test sample

set of input variables, evaluated for element k of test sample

$$\langle t_i \rangle \equiv \frac{1}{N} \sum_{k=1}^{N} |t_i(\{x_j\}|_k)| \qquad i \in \mathcal{P}(\{x_j\})$$

sum over test
sample of size N

- first order Taylor coefficient: influence of single input elements
- second order Taylor coefficent: influence of pair-wise or auto-correlations

$$T(x,y) = f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b) + rac{1}{2!}\Big((x-a)^2f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b) + (y-b)^2f_{yy}(a,b)\Big) + \cdots$$

Toy studies

S.Wunsch, R. Friese, R.Wolf, and G. Quast, Computing and Software for Big Science 2 (Sep, 2018) 5, doi:10.1007/ s41781-018-0012-, arXiv:1803.08782

- simple task for illustration
- Keras, TensorFlow
- simple fully connected feed-forward NN
 - one hidden layer with 100 nodes
 - activation function: tanh / sigmoid
 - cross-entropy loss, Adam optimizer
- binary classification
- two inputs: x₁ and x₂ (Gaussian distributions for signal and background)

Task		Me	an value	Covariance matrix						
	Signal (x_1, x_2)		Background (x_1, x_2)			Sign	nal	Background		
Fig. 1a	0.5	0.5	-0.5	-0.5	(1 0	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$		
Fig. 1b	0	0	0	0	(1 0.5	$\begin{pmatrix} 0.5\\1 \end{pmatrix}$	$\left(\begin{smallmatrix}1&-0.5\\-0.5&1\end{smallmatrix}\right)$		
Fig. 1c	0.5	0.5	-0.5	-0.5	(1 0.5	$\begin{pmatrix} 0.5\\1 \end{pmatrix}$	$\left(\begin{smallmatrix}1&-0.5\\-0.5&1\end{smallmatrix}\right)$		
Fig. 1d	0	0	0	0	(0.5 0	$\begin{pmatrix} 0\\ 0.5 \end{pmatrix}$	$\left(\begin{array}{cc} 3 & 0 \\ 0 & 3 \end{array}\right)$		

Toy studies: results

S.Wunsch, R. Friese, R.Wolf, and G. Quast, Computing and Software for Big Science 2 (Sep, 2018) 5, doi:10.1007/ s41781-018-0012-, arXiv:1803.08782

- <t_{x1}>, <t_{x2}>: influence of 1d distributions of x₁, x₂
- <tx1,x2>: influence of the correlation of x1 and x2
- $< t_{x1,x1} >$, $< t_{x2,x2} >$: indicating the influence of the auto-correlation

Implementation in our analysis (H $\rightarrow \tau \tau$)

Technical details of NN architecture:

- fully connected feed forward
- activation function: hyperbolic tangent, last layer: softmax
- 2 hidden layers, 200 nodes each
- dropout layer after each hidden layer (30% propability), L2 regularization (10-4)
- loss function: cross entropy
- optimizer: Adam (learning rate: 10-4)

Use Keras and Tensorflow for implementation of NN and calculation of the derivatives

Application to $H\to\tau\tau$: 1st order coefficients

·	pt_1 -	pt_2 -	jpt_1 -	jpt_2 -	bpt_1 -	nbtag -	- vs_m	mt_1 -	ptvis -	pt_tt -	- [ĺm	jdeta -	m_vis -	dijetpt -	met -
ggh -	0.08	0.10	0.13	0.07	0.04	0.14	0.36	0.05	0.14	0.23	0.24	0.07	0.56	0.08	0.14
qqh -	0.06	0.04	0.09	0.11	0.02	0.03	0.30	0.02	0.09	0.09	0.22	0.05	0.34	0.08	0.05
ztt -	0.13	0.10	0.09	0.05	0.02	0.05	0.46	0.03	0.20	0.18	0.10	0.03	0.67	0.06	0.09
noniso -	0.15	0.16	0.06	0.08	0.03	0.05	0.23	0.03	0.09	0.12	0.04	0.03	0.52	0.06	0.10
misc -	0.05	0.04	0.07	0.07	0.02	0.10	0.14	0.03	0.10	0.11	0.07	0.04	0.19	0.04	0.17

 we can learn which variables were important for the NN to identify the respective process

 note: presents only the view of the trained NN on information in training data, training might be not optimal, there might be more information in the training data that was not picked up

Application to $H\to\tau\tau$: 2nd order coefficients

2016, $\tau_h \tau_h$ channel

	ggh			qqh			ztt			noniso			misc	
m_vis	m_vis	1.92	m_sv	m_vis	1.43	m_sv	m_vis	2.52	m_vis	m_vis	1.01	m_sv	m_vis	0.60
m_sv	m_vis	1.90	m_vis	m_vis	1.21	m_vis	m_vis	1.43		m_vis	0.53	m_vis	m_vis	0.60
m_sv	m_sv	0.86	m_sv	m_sv	0.70	m_sv	m_sv	1.36	m_sv	m_vis	0.50	m_sv	m_sv	0.25
ptvis	m_vis	0.60	m_sv	ptvis	0.48	m_sv	ptvis	0.96	pt_1	m_vis	0.40	pt_tt	m_vis	0.22
1	mvis	0.59	ptvis	mvis	0.47	msv	pt tt	0.90	pt 2	mvis	0.36	ptvis	mvis	0.21
nt 1	mvis	0.55	msv	nt tt	0.44	ntvis	mwis	0.82	mvis	met	0.27	pt 1	mvis	0.21
perr	ntvia	0.53	nt tt	perce	0.42	ptvib	muia	0.79	muie	dijetet	0.23	PULL	muia	0.20
111_S V	ptvis	0.54	pelee	dijatat	0.42	pelee	mLV15	0.79	ILV IS	aijecpt	0.23	- + 2		0.20
m_sv	pt_tt	0.55	m_vis	ai jecht	0.36	/ ^	ILLV IS	0.01	1	ILSV	0.25	pt_z	nLV 15	0.17
pt_tt	m_vis	0.51		m_vis .	0.36		m_sv	0.4/	Jpt_1	m_vis	0.21	Jpt_1	m_vis	0.17
pt_z	m_vis	0.46	pt_1	mLv1s	0.33	ptvis	pt_tt	0.34	m_sv	n_sv	0.20	m∟sv	ptvis	0.17
m_vis	dijetpt	0.46	pt_2	m_vis	0.28	jpt_l	m_sv	0.30	ptvis	m_vis	0.19	m_sv	pt_tt	0.16
jpt_1	m_vis	0.46		m_sv	0.27	m_vis	dijetpt	0.29	pt_tt	m_vis	0.18	m_vis	met	0.16
mjj	m_vis	0.39	mjj	m_vis	0.26	pt_1	m_vis	0.29		pt_1	0.18		met	0.15
	m_sv	0.37	m_sv	dijetpt	0.24	jpt_1	m_vis	0.29	m_sv	ptvis	0.16	m_vis	dijetpt	0.15
m_vis	met	0.36	m_vis	met	0.23	m_sv	dijetpt	0.26		pt_2	0.15		m_sv	0.14
jpt_1	m_sv	0.31		mjj	0.21	m_sv	met	0.26	m_sv	pt_tt	0.14	jpt_1	m_sv	0.11
m_sv	dijetpt	0.26	jpt_1	m_vis	0.20	pt_2	m_vis	0.25	jpt_2	m_vis	0.13	mjj	m_vis	0.11
m_sv	mjj	0.26	m_sv	mjj	0.16	m_vis	met	0.22	nbtag	m_vis	0.13	jpt_2	m_vis	0.11
	mjj	0.20	ptvis	pt_tt	0.15	pt_1	m_sv	0.21	pt_1	m_sv	0.11	m_sv	met	0.10
jpt_2	m_vis	0.19	jpt_2	m_vis	0.14	pt_2	MLSV	0.20	jpt_1	m_sv	0.11	pt_1	m_sv	0.09
	pt_tt	0.18	jpt_1	m_sv	0.14	ptvis	ptvis	0.19	m_sv	met	0.11	m_sv	dijetpt	0.09
m_sv	met	0.18	m_sv	met	0.13	-	ptvis	0.19		pt_tt	0.10		pt_tt	0.09
pt_1	m_sv	0.18	pt_1	m_sv	0.12		pt_tt	0.17		met	0.10		nbtag	0.08
ptvis	pt_tt	0.17	mjj	mii	0.12	pt_tt	. pt_tt	0.16	mii	m_vis	0.10	nbtag	m_vis	0.08
nbtag	m_vis	0.15	ipt_2	m_sv	0.11	mii	m_vis	0.16	pt_1	pt_2	0.10	2	ptvis	0.08
ipt 2	m sv	0.15	di	ijetpt	0.11	msv	mt 1	0.15	1	ptvis	0.10	pt 2	msv	0.08
51 -	ptvis	0.14	ipt_1	j ipt_2	0.11	mt_1	mvis	0.15	pt_2	n_sv	0.09	ipt_2	m_sv	0.07
ideta	mvis	0.13	ipt_1	dijetpt	0.10	m sv	mii	0.14	bpt_1	mvis	0.08	JF	ipt_2	0.07
mt 1	mvis	0.13	nt 2	m sv	0.10	int 2	mvis	0.13		int 2	0.08	ntvis	nt tt	0.07
nt 2	msv	0.13	nbtag	mwis	0.10	jpt_2	msv	0.13	met	met	0.08	msv	mii	0.07
pezz	m± 1	0.12	mt 1	mwie	0.00	JPC	nt 1	0.12	ideta	muie	0.08	nco v	-int 1	0.06
111_25 V	nt 1	0.12	ntvie	ntvie	0.09	int 1	pt_1 ntvie	0.12	ntvie	nt tt	0.07	mt 1	jpc_r mwie	0.00
int 1	pt	0.11	didatat	dijotot	0.09	ptin	pevis muio	0.12	ptv13	pe_cc	0.07	mot	mot	0.00
hpt 1	pevis	0.11	arjecpt	dijetpt	0.09	nbtag	ILV IS	0.12	Putt	lijotot	0.07	idet -	met	0.00
bpt_1	m_vis	0.11	prvis	dijetpt	0.09	ind ag	ILSV	0.12		и јесрс	0.07	Jueta		0.00
nbcag	m_sv	0.11		ai jecpc	0.09	Jpt_i	pt_tt	0.11	JPL-2	ILSV	0.07	1		0.05
	met	0.11	Jdeta	mLv1S	0.09	ptvis	met	0.11		Jbr-T	0.06	DPt_1	mLvis	0.05
pt_tt	mjj	0.10	Jpt_2	jpt_2	0.09	pt_tt	met	0.11	jpt_2	met	0.06	Jpt_1	ptvis	0.05
]pt_1	Jpt_2	0.10	1	pt_tt	0.08		. mjj	0.10	Jpt_1	ptvis	0.06	pt_tt	met	0.05
ptvis	ptvis	0.10	F	ptvis	0.08	jdeta	m_vis	0.10	m_sv	dijetpt	0.06	jpt_1	met	0.05
pt_1	pt_2	0.10	m_sv	mt_1	0.08	ptvis	dijetpt	0.09	pt_1	pt_1	0.06	jpt_2	met	0.05
pt_tt	pt_tt	0.10	bpt_1	m_vis	0.08		pt_2	0.09	pt_2	met	0.06	nbtag	m_sv	0.05
mjj	mjj	0.10	pt_tt	pt_tt	0.08	bpt_1	m_sv	0.09	nbtag	met	0.06	nbtag	met	0.05
	pt_2	0.10	jpt_2	mjj	0.08		jpt_1	0.09	mt_1	m_vis	0.06	jpt_1	dijetpt	0.05
jpt_1	pt_tt	0.10	jpt_1	mjj	0.08	bpt_1	m_vis	0.09	jpt_1	met	0.06		pt_1	0.05
jpt_1	jpt_1	0.10	pt_tt	dijetpt	0.08	pt_tt	dijetpt	0.09	pt_1	pt_tt	0.06	ptvis	met	0.05
	jpt_1	0.09		jpt_2	0.08	m_sv	jdeta	0.08	pt_1	dijetpt	0.05	jpt_1	jpt_2	0.05
ptvis	mjj	0.09	pt_1	dijetpt	0.07		dijetpt	0.08	m_sv	mjj	0.05	jpt_1	jpt_1	0.05
ptvis	dijetpt	0.09	jpt_1	jpt_1	0.07	pt_1	ptvis	0.08	jpt_1	jpt_1	0.05	pt_1	pt_2	0.04
jpt_1	mjj	0.09	jpt_1	ptvis	0.07	-	met	0.08	pt_2	dijetpt	0.05	pt_1	met	0.04
pt_tt	met	0.09	:	jpt_1	0.07	pt_1	pt_tt	0.07	pt_1	ptvis	0.05	pt_1	pt_tt	0.04

50 highest ranked variables or combinations

Selected Variables

Using 1d & 2d GoFs in combination with 1st & 2nd order Taylor coefficients

- 17 to 22 input variables depending on final state and year

Variable	еµ	$e\tau_h$	$\mu \tau_{\rm h}$	$\tau_{\rm h} \tau_{\rm h}$	Variable	еµ	$e\tau_h$	$\mu \tau_{\rm h}$	$ au_{\rm h} au_{\rm h}$
$m_{ au au}^{ m SV}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$p_{ m T}^{ m jj}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$m_{ m T au au}^{ m SV}$	$\checkmark\checkmark$				$p_{\mathrm{T}}(b\operatorname{jet}_1)$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$p_{T au au}^{SV}$	$\checkmark\checkmark$				$p_{\rm T}({\rm b~jet}_2)$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$m_{\rm vis}$	\checkmark –	\checkmark –	\checkmark –	\checkmark	$p_{\mathrm{T}}^{\mathrm{miss}}$	$-\checkmark$	$\checkmark\checkmark$	\checkmark –	\checkmark –
$p_{\mathrm{T}}^{\mathrm{vis}}$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	\checkmark –	D_{ζ}	$\checkmark\checkmark$			
$p_{\mathrm{T}}^{ au_1}$			\checkmark –	\checkmark	$m_{\mathrm{T}}^{\mathrm{e}}$		$\checkmark\checkmark$		
$p_{\mathrm{T}}^{ au_2}$	\checkmark –	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	$m_{ m T}^{\mu}$	$\checkmark\checkmark$		$\checkmark\checkmark$	
$\Delta R^{\mathrm{e}\mu}$	$\checkmark\checkmark$				$m_{\mathrm{T}}^{\mathrm{e}+\mu}$	\checkmark –			
$p_{\mathrm{T}}(\mathrm{jet}_1)$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	$\max(m_{\rm T}^{\mu}, m_{\rm T}^{\rm e})$	$\checkmark\checkmark$			
η (jet ₁)	\checkmark –				$m_{\mathrm{T}}^{\tau_{\mathrm{h}}}$		$\checkmark\checkmark$	\checkmark –	$\checkmark\checkmark$
$p_{\mathrm{T}}(\mathrm{jet}_2)$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$p_{\mathrm{T}}^{ au au+\mathrm{miss}}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
η (jet ₂)	\checkmark –				$p_{\rm T}^{ au au m jj+miss}$	$-\checkmark$			
m_{ij}	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$N_{b jet}$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$\Delta \tilde{\eta}_{jj}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$N_{ m jet}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$-\checkmark$

used for 2017

currently large number of variables used, different between channels and years

- studies for harmonization and reduction of variables on-going
 - Taylor expansion important tool to identify the relevant variables

DESY.

Further ideas for application: analyze the learning process

- evaluate Taylor coefficients at each minimization step during training
- →monitor training progress, can help to interpret features and NN sensitivity to them
- but different NN configurations can look different, no proof of influence, training may not be optimal

Summary

- presented relevance propagation as applied in $H \rightarrow \tau \tau$
- Taylor expansion can be used to get an understanding of the learned properties and to monitor the training process
- used in $H \rightarrow \tau \tau$ to check if mis-modeled variables or correlations of variables are important for the trained NN and therefore could have an influence on the final result

more information in :

- S.Wunsch, R. Friese, R.Wolf, and G. Quast, "Identifying the relevant dependencies of the neural network response on characteristics of the input space", Computing and Software for Big Science 2 (Sep, 2018) 5, doi:10.1007/s41781-018-0012-, arXiv:1803.08782
- CMS AN 2018/256

Thank you for your attention!