Attempts to generate fast electromagnetic shower simulation with Generative Adversarial Networks (GANs)

> Engin Eren 05.08.2019

Introduction

Main Linac

Page 2

The International Linear Collider

A planned electron-positron collider

Lepton colliders are complementary to the LHC

- cleaner environment, controlled initial state
- coupling to leptons is tested

Advantages of the ILC over other planned electron-positron colliders

- mature technology
- centre-of-mass energy can be tuned and increased:
 250 GeV in initial stage, upgrades to 500 GeV and 1 TeV

SIM

- polarisation of both beams: *P(e-)=*±80%, *P(e+)=*∓30%
- triggerless operation
- · hermeticity of detector down to lowest angles

DESY. I Particle Discovery Opportunities at the ILC I M. Habermehl, 12 July 2019

The Slide taken from EPS-HEP 2019 Conference, presentation by M.Habermehl

ILD

Electromagnetic Showers in a HEP Experiment

- Incoming particle initiates the showers and secondary particles are produced
- These secondary particles further produce other particles until the full energy is absorbed

Picture : https://www.hephy.at/fileadmin/user_upload/VO-6-Calorimeters.pdf

This is one type of EM calorimeter : so-called **sampling calorimeter**

A calorimeter consists of alternating layers of passive absorbers and active detectors
 ILD prefers to use this type of EM calorimeter

GANs for EM Shower Simulation

Promising results by CaloGAN in 2018

- why not try for ILD ?
 - CaloGAN has a simple setup : Only 3 layers with LAr (+ lead absorbers)
 - ILD has 30 layers of Silicon Tungsten ECAL 👺

CALOGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks

Michela Paganini,^{1,2,*} Luke de Oliveira,^{2,†} and Benjamin Nachman^{2,‡} ¹Yale University, New Haven, Connecticut 06520, USA ²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Simulator	Hardware	Batch size	ms/shower
Geant4	CPU	N/A	1772 😕
		1	13.1
	CPU	10	5.11
		128	2.19
		1024	2.03
CALOGAN		1	14.5
		4	3.68
	GPU	128	0.021
		512	0.014
		1024	0.012

(Received 18 July 2017; published 30 January 2018)

Generative Adversarial Networks (GAN)

Consists of two networks playing min-max game :

- Generator learns to fool the discriminator
- Discriminator learns to distinguish fake or real images
- Continuous feedback between them. Both tries to get better

source : https://sthalles.github.io/intro-to-gans/

Steps towards CaloGAN usage

- 1. Reproduce the original result
 - Manage to run the code, which is 2 years old
 - Ask authors for clarification (if they answer)
 - Dockerize the code and adapt it for CaloLayers > 3
- 2. Prepare your computing environment
 - Ask help from IT & learn how to run the code in GPUs (read confluence)
 - Explore maxwell HPC cluster
- 3. Prepare the training data
 - Convert *slcio* files to *hdf5* files

CaloGAN-docker

<u>Purpose</u> : To package up an application with all of the parts it needs, such as **libraries and other dependencies**, and ship it all out as **one** package

📮 EnginEren / CaloGAN-docker		O Watch ▼	0 \star St	ar O	§ Fork 0		
<> Code ① Issues 0 ① Pull requests	0 III Projects 0 III Wiki	C Security	ights 🔅 Se	ettings			
This is an attempt to run CaloGAN in docl Manage topics	ker env.					Edit	
T 17 commits	₽ 1 branch	\bigcirc 0 releases	La 1 contributor				
Branch: master - New pull request	Create new file	reate new file Upload files Find File			or download 🗸		
2 EnginEren uproot added			La	atest commi	t 4416a6f	f 22 hours ago	
Dockerfile	uproot added		22 hours ago				
	"nv" option was added					17 days ago	

CaloGAN-docker

Build and push image :

\$ docker build -t engineren/calogan-docker .

\$ docker image push engineren/calogan-docker

Running in my local :

\$ docker run -it --rm -v \$PWD/CaloGAN/data:/home/CaloGAN/data calogan-docker python -m models.train models/particles.yaml

Running naf-ilc-gpu :

\$ singularity pull docker://engineren/calogan-docker:latest

\$ singularity instance start --bind data:/home/CaloGAN/data --nv calogan-docker_latest.sif caloGAN

\$ singularity run instance://caloGAN python -m models.train models/particles.yaml

Particle Gun via Geant4

8

Training

Training is being performed in GPU nodes in BIRD as well as in Maxwell cluster

Training data :

- 30k Geant4 shower events
- Each calorimeter layer is represented by a 20x20 size image.
- Incoming photon's energy is uniformly distributed between 10-50 GeV

Let's pick 5 random images out of the training set and find their nearest neighbor in the synthesised (i.e generated) datasets.

Epoch 10, Layer 1

Let's pick 5 random images out of the training set and find their nearest neighbor in the synthesised (i.e generated) datasets.

Epoch 50, Layer 1

Let's pick 5 random images out of the training set and find their nearest neighbor in the synthesised (i.e generated) datasets.

Epoch 100, Layer 1

Let's pick 5 random images out of the training set and find their nearest neighbor in the synthesised (i.e generated) datasets.

Epoch 150, Layer 1

Summary

Application of GANs to the fast EM shower simulation in progress!

Outlook :

- Explore shower shape variables.
- Go for 30 layer ILD simulation, which is not easy due to input size!
- Explore other GANs (i.e Wasserstein GAN that CMS HGCAL is using)
- Collaborate with other people who uses ML/DL intensively