
Measurement of the mass of the W boson in e^+e^- collisions at LEP with $\sqrt{s}=161 GeV$

Rosmarie Wirth

July 11, 2019

The experiment

W^+W^- production

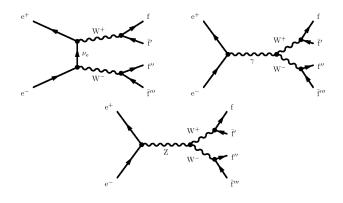


Figure: W^+W^- production and decay

 \rightarrow this leads to five different final states

Event Selection in the full hadronic channel

- approximately 46% of W^+W^- are expected to decay full hadronic
- \bullet largest background is $Z/\gamma \to q \bar q$ events with energetic initial state photons or hard gluon
- characteristic is four jets
- other cuts: $E_{meas} > 50 \, GeV$, kinematic fit with $m_{W,reco} > 72 \, GeV$, well seperated four-jet topology
 - \rightarrow this removes 99% of the $Z/\gamma \rightarrow q\bar{q}$ background

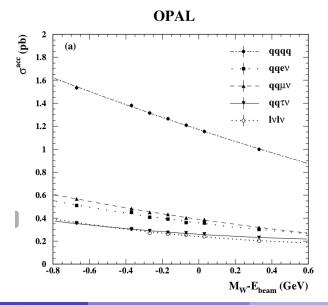
W^+W^- production cross section

Observed number of candidate events in each W^+W^- decay channel with expected number of signal and background:

Selection	Expected signal	Expected background	Observed
$W^+W^- o q\overline{q}q\overline{q}$	9.6 ± 1.0	3.44 ± 0.39	14
$ m W^+W^- ightarrow q \overline{q} e \overline{ u}_e$	3.89 ± 0.44	0.18 ± 0.27	3
$ m W^+W^- ightarrow q \overline{q} \mu \overline{ u}_{\mu}$	4.19 ± 0.46	0.27 ± 0.15	2
$ m W^+W^- ightarrow qar q au ar u_ au$	2.32 ± 0.28	0.96 ± 0.34	7
$oxed{W^+W^- ightarrow\ell^+ u_\ell\ell'^-\overline{ u}_{\ell'}}$	2.58 ± 0.28	$0.19^{+0.12}_{-0.04}$	2
Combined	22.6 ± 2.4	5.0 ± 0.6	28

with
$$\mathcal{L}=9.89\pm0.06pb^{-1}$$
 at $\sqrt{s}=161.3\pm0.2 GeV$ and $M_W=80.33\pm0.15 GeV$

W^+W^- production cross section


$$L = \prod_{i} P_i(N_i, \mu_i(\sigma_{WW})) = \prod_{i} \frac{\mu(\sigma_{WW})^{N_i} e^{-\mu_i(\sigma_{WW})}}{N_i!}$$
(1)

with L is likelihood, P_i Possion probabilities of observing N_i events and Monte Carlo prediction of $\mu(\sigma_{WW})$ events

maximum likelihood value yields to a crossection of:

$$ightarrow \sigma_{WW} = 3.62^{+0.93}_{-0.82} \pm 0.16 pb$$

Determination of the W boson mass

Determination of the W boson mass

$$\mu_i(M_W - E_{beam}) = \mathcal{L} \cdot \sigma_i^{acc}(M_W - E_{beam}) \tag{2}$$

with i beeing different channels

- ullet a maximum likelihood fit is performed to extract M_W
- assuming Standard Model branching ratios

$$ightarrow M_W = 80.40^{+0.44}_{-0.41}^{+0.09} \pm 0.10$$
 GeV