Measurement of the mass of the W boson in e^+e^- collisions at LEP with $\sqrt{s}=161 GeV$ Rosmarie Wirth July 11, 2019 ### The experiment ## W^+W^- production Figure: W^+W^- production and decay \rightarrow this leads to five different final states #### Event Selection in the full hadronic channel - approximately 46% of W^+W^- are expected to decay full hadronic - \bullet largest background is $Z/\gamma \to q \bar q$ events with energetic initial state photons or hard gluon - characteristic is four jets - other cuts: $E_{meas} > 50 \, GeV$, kinematic fit with $m_{W,reco} > 72 \, GeV$, well seperated four-jet topology - \rightarrow this removes 99% of the $Z/\gamma \rightarrow q\bar{q}$ background ## W^+W^- production cross section Observed number of candidate events in each W^+W^- decay channel with expected number of signal and background: | Selection | Expected signal | Expected background | Observed | |---|-----------------|------------------------|----------| | $W^+W^- o q\overline{q}q\overline{q}$ | 9.6 ± 1.0 | 3.44 ± 0.39 | 14 | | $ m W^+W^- ightarrow q \overline{q} e \overline{ u}_e$ | 3.89 ± 0.44 | 0.18 ± 0.27 | 3 | | $ m W^+W^- ightarrow q \overline{q} \mu \overline{ u}_{\mu}$ | 4.19 ± 0.46 | 0.27 ± 0.15 | 2 | | $ m W^+W^- ightarrow qar q au ar u_ au$ | 2.32 ± 0.28 | 0.96 ± 0.34 | 7 | | $oxed{W^+W^- ightarrow\ell^+ u_\ell\ell'^-\overline{ u}_{\ell'}}$ | 2.58 ± 0.28 | $0.19^{+0.12}_{-0.04}$ | 2 | | Combined | 22.6 ± 2.4 | 5.0 ± 0.6 | 28 | with $$\mathcal{L}=9.89\pm0.06pb^{-1}$$ at $\sqrt{s}=161.3\pm0.2 GeV$ and $M_W=80.33\pm0.15 GeV$ ## W^+W^- production cross section $$L = \prod_{i} P_i(N_i, \mu_i(\sigma_{WW})) = \prod_{i} \frac{\mu(\sigma_{WW})^{N_i} e^{-\mu_i(\sigma_{WW})}}{N_i!}$$ (1) with L is likelihood, P_i Possion probabilities of observing N_i events and Monte Carlo prediction of $\mu(\sigma_{WW})$ events maximum likelihood value yields to a crossection of: $$ightarrow \sigma_{WW} = 3.62^{+0.93}_{-0.82} \pm 0.16 pb$$ #### Determination of the W boson mass #### Determination of the W boson mass $$\mu_i(M_W - E_{beam}) = \mathcal{L} \cdot \sigma_i^{acc}(M_W - E_{beam}) \tag{2}$$ with i beeing different channels - ullet a maximum likelihood fit is performed to extract M_W - assuming Standard Model branching ratios $$ightarrow M_W = 80.40^{+0.44}_{-0.41}^{+0.09} \pm 0.10$$ GeV