Scaling violation

Public transportation in a proton

Deep inelastic scattering

In order to evaluate the proton structure one scatters leptons at protons.

Def.:

Q → Momentum of exchange photon

 $x \rightarrow$ Momentum fraction Q^2/(2mk)

Theoretical background

 For inelastic scattering one awaits structure functions depending on two kinematic variables, e.g.:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{4\,\pi\,\alpha^2}{Q^4}\,\frac{1}{x}\,\frac{E'}{E}\left[F_2(x,Q^2)\cos^2\frac{\Theta}{2} + \frac{Q^2}{2\,x^2\,M_p^2}(2\,x\,F_1(x,Q^2)\sin^2\frac{\Theta}{2})\right]$$
Electric field of the parton Magnetic field of the parton

- 1968 at the SLAC: For high energies no dependence of the structure functions on Q^2 → Scaling
- Sign for elastic scattering

Results

Quark Parton Model

- Developed by Richard Feynman 1969
- Proton consists of pointlike subparticles
- Scattering happens elastically at these subparticles
- Parton distribution functions (PDFs) give information about the constituents

Precise measurements of the structure function

X

March 2011 HERAPDF1.6 (prel.) 0.8 free $\alpha_s(M_{\downarrow})$ exp. uncert. model uncert. XU, parametrization uncert. 0.6 0.4 $xg (\times 0.05)$ xd, 0.2 $xS (\times 0.05)$ 10-3 10-2 10-1

H1 and ZEUS HERA I+II PDF Fit with Jets

 $Q^2 = 10 \text{ GeV}^2$

Scaling violation

Small values of x: Sea quarks and gluons dominate.

The higher Q the more gluons and sea quarks can be seen.

High values of x: Valence quarks dominate. The higher Q the more gluon emission is visible.

Public transportation picture

People = energy

Trains → high energy

Bus, bikes, pedestrians

→ low energy

Different resolutions

Low resolution (small Q)

High resolution (high Q)