
ROOT TUTORIAL

David Brunner, Dirk Krücker, Ashraf Mohamed

https://desycloud.desy.de/index.php/s/RZgiy5fkHjtd5rf

July 24-25th, 2019 DESY Summer Student Program 2019

https://desycloud.desy.de/index.php/s/RZgiy5fkHjtd5rf

Questionnaire on ROOT Experience
2

2019

You are good!
ROOT

Questionnaire on ROOT Experience
3

2018

ROOT

Questionnaire on MatplotLib Experience
4

2019

matplotlib Popular in
data science
e.g. deep learning

Questionnaire on ROOT Experience
5

We will be very basic to
get everybody on board.

In case you are really fluent
(what nobody claimed this year)
you may
• help us in the exercises or
• spent the afternoons with

nicer things
• ask us advanced ROOT

questions during the exercises

What is ROOT?
6

¨ ROOT is the Swiss Army Knife of High Energy
Physics

¨ It will be with you
for the rest of your
scientific career
in HEP

What is ROOT
7

¨ Plots: The Higgs has been “discovered” in a ROOT
plot (2012)

Observation of ttH by CMS and ATLAS
2018 - another ROOT Plot

8

What is ROOT
9

What is ROOT
10

¨ more plots in 3D

What is ROOT
11

¨ Data format for the LHC (and other) experiments

ROOT

¨ ROOT is an analysis software that is used extensively in
particle physics

¨ The three main aspects are:
¤ Graphics/Plotting

n Various 1-dim up to n-dim histogram formats
n Graphs and functions

¤ Data analysis
n Math libraries
n Statistical libraries such as RooFit/RooStat
n ML: TMVA (neural network, boosted decision trees, etc.)

¤ Data storage
n Data structures for event-based data analysis

¨ C++14 and python (PyRoot) can both be used

12

What is ROOT?
13

¨ ROOT is the Swiss Army Knife of High Energy
Physics

¨ BUT it does not looks like this

What is ROOT
14

¨ ROOT is the Swiss Army Knife of High Energy
Physics

¨ BUT it does not looks like this

But like this
(after 25y of
development)

¨ We try to help
you to take your
first steps into
the ROOT Jungle

Some technical details

¨ Connect to your DESY account
(or install ROOT on your notebook)

¨ Code examples throughout the talk with colors

¨ WG server depending on your group CMS/Belle/ILC/?
¤ ssh -Y naf-cms.desy.de
¤ ssh -Y naf-belle.desy.de
¤ ssh -Y naf-ilc.desy.de

¨ Setup the needed software on a DESY machine
module load gcc/47
module load python/2.7
module load root6

Execute this Some example code

15

everytime
you login
or put into: .zshrc
or .bashrc

The version is a bit old 6.02.00 but
this does not matter here.

Installation on your laptop

¨ Installation
¤ A recent version of ROOT 6 can be obtained from (2019-06-25)

https://root.cern.ch/content/release-61800
as binaries for Linux, Windows and Mac OS X
and as source code.

¨ Mac root_v6.18.00.macosx64-10.14-clang100.dmg
¨ Linux - Ubuntu

¤ Ready-to-use packages of ROOT are available for Ubuntu and other
distros.

¨ Windows
¤ root_v6.18.00.win32.vc16..exe
¤ In addition, you would need Python:

https://www.python.org/downloads/
¤ Better use an X11 server e.g. MobaXterm

and login on a DESY Linux server
¨ Web interface: https://nafhh-x2.desy.de:3443/auth/ssh (xfce)

16

Installation (maybe) for later

Here, we will use the NAF!

https://root.cern.ch/content/release-61800
https://root.cern/download/root_v6.18.00.macosx64-10.14-clang100.dmg
https://root.cern/download/root_v6.18.00.win32.vc16.exe
https://www.python.org/downloads/
https://nafhh-x2.desy.de:3443/auth/ssh

Get Connected
17

¨ Everybody ready to start a ROOT session ????
¤ It’s a hands-on introduction!

¤ Login
¤ load the modules
¤ start ROOT by typing root

Crash Course in OO Programming
18

¨ A program is a list of commands
¨ A function=subroutine=method is an encapsulated list

of commands

¨ class=object is a combination of data and operations
operation=function=method

¨ Classes can be part of a
hierarchy ⟹ Object-Oriented
Programming = OOP
¤ Inheritance

double Example(double x){
double x2 = x*x;
return x2;

}

def Example(x):
x2 = x*x
return x2 Python C++

solve a problem only once and re-use the
code

Crash Course in OO Programming
19

¨ A program is a list of commands
¨ A function=subroutine=method is an encapsulated list

of commands

¨ class=object is a combination of data and operations
operation=function=method

¨ Classes can be part of a
hierarchy ⟹ Object-Oriented
Programming = OOP
¤ Multiple Inheritance (define only once)

def Example(x):
x2 = x*x
return x2 Python

double Example(double x){
double x2 = x*x;
return x2;

} C++

Crash Course in OO Programming
20

¨ Data and function are called members

¨ There are ways to restrict access to class members in
arbitrary (confusing) complex way

¨ Members can be hidden (private or protected)
to the outside or accessible for everybody (public)

¨ protected members are
¨ But friend classes can

access members

Getting started with ROOT: C++

¨ ROOT interface is prompt based and speaks C++

¨ Quit the root session

¨ External macros

$ root -l
root [0] gROOT->GetVersion()
(const char *) "6.02/05”
root [1] sqrt(9) + 4
(const double)7.0000000000000000e+00

root [2] .x Example.C(2)

root [3] .L Example.C
root [4] Example(2)

root [5] .q Create Example.C
float Example(float x) {

float x2 = x*x;
return x2;

}

$ root –l -q "Example.C(2)"

or

From command line (quotation marks needed if function takes argument):

21

-b batch i.e. no display

Getting started with ROOT: C++

¨ In ROOT everything is a class
¤ Either a variable or a pointer

¤ Functionality is implemented
by methods

¨ TAB completion works!!!
¤

¤ Tells you which class names exists that start with TH1
¤ which methods are implemented in a class

$ root –l
root [0] TH1F h(“h”,”A histogram”,100,-5,5)
(TH1F &) Name: h Title: A histogram NbinsX: 100

22

TH1F is the histogram class
(A 1D histogram of floats)

“h” is the unique internal name
you give it as a reference

“A histogram” a title that will be
be used for
drawing

100,-5,5 number of bins
lower/upper edge

root [1] h.FillRandom(“gaus”)
root [2] h.Draw()

root [3] TH1[TAB KEY]
root [3] TH1F::[TAB KEY]
root [3] h.[TAB KEY]

root [4] .ls
root [5] .undo // .undo n
root [6] .help

The ROOT home page
23

¨ The ultimate reference
¤ https://root.cern.ch/
¤ https://root.cern.ch/doc/v618/modules.html

¨ Tons of information, tutorials, guides, …

10 minutes to test the ROOT interface and check the web page

https://root.cern.ch/
https://root.cern.ch/doc/v618/modules.html

Getting started: PyROOT

¨ Start the python environment and load ROOT

¨ Quit the session

$ python
>>> from ROOT import gROOT,TH1F
>>> gROOT.GetVersion()
'6.02/05’
>>> from math import sqrt
>>> sqrt(9) + 4
7.0
>>> help(TH1F)
…
>>> from Example import *
>>> Example(2)
4

Create Example.py (function)
def Example(x):

x2 = x*x
return x2

>>> quit() (or Ctrl + D)

from ROOT import *
print "Hello World"
for i in range(0,5):

print i

Create Example2.py (plain macro)

$ python -i Example2.py
or

>>> from Example import *

24

-i keeps the python prompt open

Comparison: Python vs. C++

¨ Both languages have their pros and cons

¨ You can use ROOT in the C++ way or through Python
¤ Python is easier for beginners – This is what we do in the exercises
¤ ROOT is C++ code
¤ Depends on the group you work with – you will need both in HEP

Python C/C++
interpreted compiled but

BUT ROOT comes with an interpreter

slower execution of python code fast

dynamic typing /checks at runtime strict type checking at compile time

automatic memory management partly manual memory management

blocks separated by indentation code blocks separated by {}

25

Python C++

//defining a variable
//declare its type!
int a = 1;
double b = 1.5;
//printing output
cout<<a<<” is not equal "<<b<<endl;

//importing packages
#include "TH1F.h"

//{} define the commands inside
//loops/statement

//For loop
for (int i =0; i < 10; i++){

cout << i << endl;}
//if/else statements
if (b == c){
cout<<"they are equal"<<endl;}

else if (b > c){
cout<<"b is bigger"<<endl;}

else{
cout<<"c is bigger"<<endl;}

#defining a variable
#just use it
a = 1
b = 1.5
#printing things to the screen
print a, "is not equal", b

#importing functions/classes
from ROOT import TH1F

#Indentation defines commands
#loops/statement

#For loop
for i in range(0,10):

print i
#if/else statements
if b == c:

print "they are equal"
elif b > c:

print "b is bigger"
else:

print "c is bigger"

26

Pointer, Scope and lifetime in C++
27

¨ Typical ROOT C++:
¤ TH1F* hist = new TH1F(“hist”,””,10,0,10);

n hist->Draw();

¤ TH1F hist(“hist”,””,10,0,10);
n hist.Draw();

¨ {int n=3;} cout<<n<<endl; <- Error!
¤ variables have a limited scope, they disappear outside their

scope, that is { ... }

¨ Look at ~kruecker/public/sst2019_root/disapearing.C
¨ What’s going wrong here?

ipython: a convenient python shell
28

¨ module load gcc/47
¨ module load python/2.7
¨ module load root6
¨ ipython

¤ History:
n Unix style: up,down-arrows and search with ^R

¤ Extended help:
n TH1F? TH1F.Fill?
n help(TH1F)

Basic classes in ROOT

¨ TObject: base class for all ROOT objects
¨ TH1: base class for 1-, 2-, 3-D Histograms
¨ TStyle: class for style of histograms, axis, title, markers, etc…
¨ TCanvas: class for graphical display
¨ TGraph: class of graphic object based on x and y arrays
¨ TF1: base class for functions
¨ TFile: class for reading/writing root files
¨ TTree: basic storage format in ROOT
¨ TMath: class for math routines
¨ TRandom3: random generator class
¨ TBrowser: browse your files

Complete list: http://root.cern.ch/root/html/ClassIndex.html

29

http://root.cern.ch/root/html/ClassIndex.html

Histograms

¨ A histogram is just occurrence counting, i.e. how
often a certain outcome appears

Bin Count
[-3.5, -2.5] 9
[-2.5, -1.5] 32
[-1.5, -0.5] 109
[-0.5, 0.5] 180
[0.5, 1.5] 132
[1.5, 2.5] 34
[2.5, 3.5] 4

-3 -
3.3
2

2.5
-1
1.4
3.4
-2.9
3.3
3.2
3.4
-2.9
2

2.5
-1
….

30

A density estimator

Histograms in ROOT
¨ Histograms can be:

¤ Standard classes: 1D (TH1), 2D (TH2), 3D(TH3)

¤ Content: integers (TH1I), floats (TH1F), double (TH1D)

>>> from ROOT import TH1F
>>> hist = TH1F("hist", "title; x value; y value", 20, 0, 5)

>>> hist.Fill(2)
>>> hist.Fill(2.5,0.5) >>> hist.SetBinContent(2,2)

hist
Entries 1
Mean 0.375
RMS 0

 x value
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 y
va

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
hist

Entries 1
Mean 0.375
RMS 0

title
hist

Entries 2
Mean 2.167
RMS 0.2357

 x value
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 y
va

lu
e

0

0.2

0.4

0.6

0.8

1
hist

Entries 2
Mean 2.167
RMS 0.2357

title

Increase bin at x value by
1 (default) (or 0.5 “weight”)

Set content of bin 2, which corresponds
to values 0.25 < x < 0.5, to 2

31

Histograms in ROOT

hist
Entries 1000
Mean 0.009204
RMS 0.9861

 x value
-3 -2 -1 0 1 2 3

 n
um

be
r o

f e
nt

rie
s

0

5

10

15

20

25

30

35
hist

Entries 1000
Mean 0.009204
RMS 0.9861

Gaussian

¨ Fill histogram according to Gaussian distribution
with 1000 entries and extract mean and RMS

>>> hist.GetBinContent(58)
34.0
>>> hist.GetMean()
0.009204489559116142
>>> hist.GetRMS()
0.986066762844140

>>> from ROOT import TH1F
>>> hist = TH1F("hist", "Gaussian", 100, -3, 3)
>>> hist.FillRandom("gaus", 1000)
>>> hist.Draw()

One can always combine bins (rebin) but not the other way around

32

>>> #Change binning of histogram
>>> hist.Rebin(2)
>>> #Multiply each bin by factor
>>> hist.Scale(2)

Histograms styles
33

>>> hist.Draw("OPTION") https://root.cern.ch/root/html/THistPainter.html

Option Explanation
"E" Draw error bars.

"HIST" When an histogram has errors it is visualized by default with error bars.
To visualize it without errors use the option "HIST".

"SAME" Superimpose on previous picture in the same pad.
"TEXT" Draw bin contents as text.

Options just for TH1
"C" Draw a smooth Curve through the histogram bins.
"E0" Draw error bars. Markers are drawn for bins with 0 contents.
"E1" Draw error bars with perpendicular lines at the edges.
"E2" Draw error bars with rectangles.
"E3" Draw a fill area through the end points of the vertical error bars.
"E4" Draw a smoothed filled area through the end points of the error bars.

Options just for TH2
"COL" A box is drawn for each cell with a color scale varying with contents.
"COLZ" Same as "COL". In addition the color palette is also drawn.
"CONT" Draw a contour plot (same as CONT0).
"SURF" Draw a surface plot with hidden line removal.

https://root.cern.ch/root/html/THistPainter.html

Exercise: Histograms
Write a python macro ExerciseHist.py
1. Create a histogram with 10 bins ranging

from 0. to 100. with title/x-axis label "x"
2. Fill the histogram at the following numbers:

11.3, 25.4, 18.1
3. Fill the histogram with the square of all

integers from 0. to 9.
(Hint: A simple loop will save you from
typing several lines of code)

4. Draw the histogram.
5. Calculate the mean value and the rms and

show it on the screen.
print mean, rms

6. Calculate the integral of the histogram.
7. Identify the bin with the maximum number

of entries.
8. Find the maximum bin content.
9. Set the y-axis label to "entries".
10. Set the line color of the histogram to red.
11. Run with

python -i ExerciseHist.py

¨ One dimensional histogram TH1F.

¨ Constructor of a histogram: TH1F::TH1F(const char* name,
const char* title, Int_t nbinsx, Double_t xlow, Double_t
xup).

¨ Fill a histogram: Int_t TH1F::Fill(Double_t x)
¨ Draw a histogram: void TH1F::Draw(Option_t* option = "")
¨ Mean of a histogram: Double_t TH1F::GetMean(Int_t axis

= 1) const
¨ RMS of a histogram: Double_t TH1F::GetRMS(Int_t axis =

1) const
¨ Mode of a histogram: Int_t TH1F::GetMaximumBin() const
¨ Get the bin content of a histogram: Double_t

TH1F::GetBinContent(Int_t bin) const

¨ Integral of a histogram: Double_t TH1F::Integral(Option_t*
option = "") const

¨ Y-axis used to draw the histogram: TAxis* TH1F::GetYaxis()
const

¨ Access axis and set label void TAxis::SetTitle(char*)
¨ Change line color of the histogram:

void TAttLine::SetLineColor(Color_t lcolor).
The color index for red is named kRed.

34

https://root.cern.ch/root/html/TH1F.html
http://root.cern.ch/root/html/TH1F.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TAxis.html
http://root.cern.ch/root/html/TH1.html

histogram1
Entries 13
Mean 26.14
RMS 24.1

x
0 10 20 30 40 50 60 70 80 90 100

en
tri

es

0

0.5

1

1.5

2

2.5

3

3.5

4
histogram1

Entries 13
Mean 26.14
RMS 24.1

Exercise: Histograms
35

https://root.cern.ch/root/htmldoc/guides/users-guide/Histograms.htm

Canvas and Legends in ROOT

¨ ROOT distinguishes between a histogram and a
“canvas” where is histogram is drawn on

¨ Multiple histograms (and other objects) can be
drawn on the same canvas with Draw(“same”)

¨ Legends can be added to the canvas

>>> from ROOT import Tcanvas,TLegend,TH1F,kRed,kBlue
>>> c = TCanvas("canvas", "canvas", 800 , 600)
...
...
>>> legend = TLegend(0.16, 0.63, 0.45, 0.91)
>>> legend.AddEntry(hist1, "Gaussian", "l")
>>> legend.AddEntry(hist2, "Polynomial", "l")
>>> legend.Draw()

36

Exercise: Canvas and Legends
Write a python macro ExerciseCanvas.py:

¨ Create two histograms with 50 bins ranging from -3. to 3. with two different names
¨ Fill first histogram with Gaussian distribution with 1000 entries
¨ Fill second histogram with a second order polynomial and 500 entries

¤ hist2.FillRandom("pol2", 500)

¨ Create a TCanvas c1 and draw both histograms (option "same” on the second)
¨ Set the line color of the first histogram to kRed and the second to kBlue. (hist.SetLineColor(kRed))

¨ Clone both histograms
¤ hist1b = hist1.Clone()

¨ Scale both cloned histograms by the inverse of their respective integral, i.e. normalise them to
unit area.

¨ Create a TCanvas c2 and draw both cloned histograms
¨ Create a legend at position (0.16, 0.63, 0.45, 0.91) and add entries for both histograms to it.

Draw the legend.
¨ Save both canvases as pdf files and as root file

¤ c.SaveAs("filename.pdf")
¤ c.SaveAs("filename.root")

37

Exercise: Canvas and Legends

x value
-3 -2 -1 0 1 2 3

 y
 v

al
ue

0

10

20

30

40

50

60

Gaussian
hist

Entries 1000
Mean 0.009227
RMS 0.987

Gaussian

x value
-3 -2 -1 0 1 2 3

 y
 v

al
ue

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Gaussian
hist

Entries 1000
Mean 0.009227
RMS 0.987

Gaussian

Polynomial

Gaussian

c1

c2

38

BTW.: errors by default are sqrt(nbin)

Graphical User Interface (GUI)

¨ GUI can be used for visualization and adjustment of
styles or plotting on the fly

>>> from ROOT import TBrowser,TFile
>>> b = TBrowser()
>>> f = TFile("filename.root")

Right click on the lines of hist1
è SetLineColor opens color panel

39

root file.root
root [0] new TBrowser

Graphical User Interface (GUI)

¨ Sometimes changing things by hand are much easier
¤ Position of legends (coordinates are given as

percentage with respect to the boundaries of the plot)
¤ Font sizes of axis labels, offset of lables

¨ Make the change manually
¨ Save the canvas as a .C file
¨ Find the code, import the settings back

New legend position
and settings: white bkg
and line color

40

Graphs in ROOT

¨ Three main classes for graphs TGraph,
TGraphErrors, TGraphAsymmetricErrors

¨ Graphs are used to display value pairs, errors can be
defined to be either symmetric or asymmetric

>>> from ROOT import TGraph
>>> #create graph with 3 points
>>> graph = TGraph(3)
>>> #set three points of the graph
>>> graph.SetPoint(0, 3.0, 2.1)
>>> graph.SetPoint(1, 5.0, 2.9)
>>> graph.SetPoint(2, 7.2, 3.5)
>>> #set styles
>>> graph.SetMarkerStyle(21)
>>> graph.SetMarkerSize(1)
>>> #Draw axis (A), points (P), and line (L)
>>> graph.Draw("APL") 3 4 5 6 7

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Graph

41

Graphs in ROOT

¨ Three main classes for graphs TGraph,
TGraphErrors, TGraphAsymmetricErrors

¨ Graphs are used to display value pairs, errors can be
defined to be either symmetric or asymmetric

>>> from ROOT import TGraph
>>> #create graph with 3 points
>>> graph = TGraph(3)
>>> #set three points of the graph
>>> graph.SetPoint(0, 3.0, 2.1)
>>> graph.SetPoint(1, 5.0, 2.9)
>>> graph.SetPoint(2, 7.2, 3.5)
>>> #set styles
>>> graph.SetMarkerStyle(21)
>>> graph.SetMarkerSize(1)
>>> #Draw axis (A), points (P), and line (L)
>>> graph.Draw("APL") 3 4 5 6 7

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Graph

37

Functions in ROOT

¨ Classes for TF1, TF2, TF3 for 1 to 3 dimensional functions
>>> from ROOT import TF1
>>> #Use of predefined functions “gaus”, “pol1”,”pol3”, etc.
>>> fGaus = TF1("fGaus", "gaus", -2, 2)

>>> #Use of custom user functions
>>> f = TF1("f","[0]*exp(-0.5*((x-[1])/[2])^2)", -2, 2)

>>> #Setting the parameters
>>> f.SetParameter(0,20)
>>> f.SetParameter(1,0)
>>> f.SetParameter(2,1)

>>> fGaus.SetParameter(0,10)
>>> fGaus.SetParameter(1,0)
>>> fGaus.SetParameter(2,1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

5

10

15

20

25

[0]*exp(-0.5*((x-[1])/[2])^2)

[0]*exp(-0.5*((x-[1])/[2])^2)

gaus

42

Fitting in ROOT

>>> hist.Fit("fGaus”)
FCN=97.4876 FROM MIGRAD STATUS=CONVERGED 67 CALLS 68 TOTAL

EDM=3.44445e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 2.29946e+01 1.02159e+00 3.70880e-03 2.59473e-04
2 Mean -2.11506e-03 3.28869e-02 1.58874e-04 5.12360e-03
3 Sigma 9.50152e-01 3.00472e-02 3.74233e-05 1.80927e-02

<ROOT.TFitResultPtr object at 0x7fa0db5b9e70>

>>> hist.Draw()
>>> fGaus.Draw("same")

43

Option->Show Fit Parameters

More on Fits and Fitting Quality
44

¨ Most common fit method: (Weighted)
Least Squares
¤ min

%
∑'{𝑦'−𝑓(𝑥', 𝜃)}

2

(weighted: divide by error)
¤ χ2~∑{𝑦'−𝑓(𝑥', 𝜃)}

2

distribution of residuals
Depends on

¤ χ2 probability distribution depends on
DOF
n E.g. 20 measurements

Gaussian fit (N,𝜇, 𝜎) -> DOF=20-3

¨ https://root.cern.ch/root/htmldoc/guide
s/users-guide/FittingHistograms.html

Exercise: Graphs and Fits

Write a python macro ExerciseGraph.py:
¨ Create a graph with symmetric errors and 5

points.
¨ Set the following points (0-4): (1.0, 2.1),

(2.0, 2.9), (3.0, 4.05), (4.0, 5.2), (5.0, 5.95)
¨ Set the errors on x to 0.0 and the errors on

y to 0.1.
¨ Draw the graph including the axes and error

bars.
¨ Create a one dimensional function

f(x)=mx + b and fit it to the graph.

¨ Obtain the two parameters a and b from
the function and their estimated
uncertainties.

Take the Gaussian histogram from the previous
exercise (ExerciseCanvas.py) and fit a Gaussian.
Is it a good fit?

¨ A one dimensional graph TGraphErrors.

¨ A constructor of a graph:
TGraphErrors::TGraphErrors(Int_t n).

¨ A method to set the points of a graph: void
TGraphErrors::SetPoint(Int_t i, Double_t x, Double_t
y).

¨ A method to set the errors of a graph: void
TGraphErrors::SetPointError(int i,Double_t ex,
Double_t ey).

¨ A method to fit a graph with a function: TFitResultPtr
TGraphErrors::Fit(const char *fname, Option_t
*option, Option_t *, Axis_t xmin, Axis_t xmax).

¨ A method to return the parameters of a function:
Double_t TF1::GetParameter(Int_t ipar).

¨ A method to return the errors on the parameters of a
function: Double_t TF1:GetParError(Int_t ipar) const .

45

http://root.cern.ch/root/html/TGraphErrors.html
http://root.cern.ch/root/html/TGraphErrors.html
http://root.cern.ch/root/html/TGraph.html
http://root.cern.ch/root/html/TGraphErrors.html
http://root.cern.ch/root/html/TGraph.html
http://root.cern.ch/root/html/TFormula.html
http://root.cern.ch/root/html/TF1.html

Exercise: Graphs and Fits
46

x-axis
1 1.5 2 2.5 3 3.5 4 4.5 5

y-
ax
is

2

2.5

3

3.5

4

4.5

5

5.5

6

Graph

¨ TFile is basic I/O format in root
¤ Open an existing file (read only)

n InFile = TFile(“myfile.root”, “OPTION”)
n OPTION = leave blank (read only), “RECREATE” (replace file),
“UPDATE” (append to file)

n Files can contain directories, histograms and trees (ntuples) etc.

¨ ROOT stores data in TTree format
¤ Tree has “entries” (e.g. collision events)

each with identical data structure
¤ Can contain floats, integers, or more complex objects

(whole classes, vectors, etc…)
¤ TNtuple is a tree that contains only simple variables

Classes: TFile and TTree
47

Creating a TTree from text file

¨ Copy the following text file

¤ cp /afs/desy.de/user/k/kruecker/public/sst2019_root/basic.dat .

¤ Or from this link

>>> from ROOT import TFile,TTree
>>> f = TFile("ntuple.root","RECREATE")
>>> t = TTree("ntuple","reading data from ascii file")
>>> t.ReadFile("basic.dat","x:y:z")
>>> t.Write()

[nafhh-cms02] ~ more basic.dat
-1.102279 -1.799389 4.452822
1.867178 -0.596622 3.842313
-0.524181 1.868521 3.766139
-0.380611 0.969128 1.084074
0.552454 -0.212309 0.350281
-0.184954 1.187305 1.443902
0.205643 -0.770148 0.635417

48

https://indico.desy.de/materialDisplay.py?materialId=0&confId=15780

Working with TTrees
¨ Get the following root file (or use from previous page)

¤ cp /afs/desy.de/user/k/kruecker/public/sst2019_root/basic.root .

>>> from ROOT import TFile
>>> f = TFile("basic.root")
>>> t = f.Get("ntuple")

>>> t.Show(2)
======> EVENT:2
x = -0.524181
y = 1.86852
z = 3.76614

>>> t.Scan()
**
* Row * x * y * z *
**
* 0 * -1.102278 * -1.799389 * 4.4528222 *
* 1 * 1.8671779 * -0.596621 * 3.8423130 *
* 2 * -0.524181 * 1.8685209 * 3.7661390 *
* 3 * -0.380611 * 0.9691280 * 1.0840740 *

Shows the content and structure
of the tree for one entry

Shows one or multiple
variables for all entries

49

Plotting quantities directly from TTrees

>>> T.Draw("x:y","","colz”)

>>> t.Draw("x","fabs(y) < 1.4","")
829L

number tells
you how
many entries
passed condition

htemp
Entries 1000
Mean 0.01592
RMS 1.009

x
-4 -3 -2 -1 0 1 2 30

5

10

15

20

25

30

35

htemp
Entries 1000
Mean 0.01592
RMS 1.009

x

htemp
Entries 828
Mean 0.03963
RMS 0.7085

x
-1.5 -1 -0.5 0 0.5 1 1.50

2

4

6

8

10

12

14

16

18

20
htemp

Entries 828
Mean 0.03963
RMS 0.7085

x {fabs(x) < 1.4}

y
-5 -4 -3 -2 -1 0 1 2 3

x

-4

-3

-2

-1

0

1

2

3

0

2

4

6

8

10

12

x:y

>>> t.Draw("x") Scatter plot shows the
correlation between variables

50

TTree functions (very useful for quick checks)

Command Action
t.Print() Prints the content of the tree

t.Scan() Scans the rows and columns

t.Draw("x") Draw a branch of tree

How to apply cuts:
t.Draw("x", "x>0")
t.Draw("x", "x>0 && y>0")

Draw “x” when “x>0”
Draw “x” when both x >0 and y >0

t.Draw("y", "", "same") Superimpose “y” on “x”

t.Draw("y:x") Make “y vs x” 2d scatter plot

t.Draw("z:y:x") Make “z:y:x” 3d plot

t.Draw("sqrt(x*x+y*y)") Plot calculated quantity

t.Draw("x>>h1") Dump a root branch to a histogram

51

Looping through entries of a TTree

>>> from ROOT import TFile,TH1D
>>> f = TFile("basic.root")
>>> t = f.Get("ntuple")
>>> nEntries = t.GetEntries()
>>> hist = TH1D("x", "x",40,-4,4)
>>> for i in range(0,nEntries):
... entry = t.GetEntry(i)
... hist.Fill(t.x)
...
>>> hist.Draw()

x
Entries 1000
Mean 0.01592
RMS 1.009

-4 -3 -2 -1 0 1 2 3 40

10

20

30

40

50

60

70

80

x
Entries 1000
Mean 0.01592
RMS 1.009

x

52

for evt in tree:
hist.Fill(evt.x)

....
>>> for evt in t:
... hist.Fill(evt.x)
...

Draw with Cuts
53

root /afs/desy.de/user/k/kruecker/public/sst2019_root/basic.root
>>> ntuple->Draw("x:y","","box")
>>> ntuple->Draw("x:y","x<1&&y<1","colzsame")

Exercise: Tree
54

¨ Do p41-p46

Ntuples, Trees and Flat Ntuples
55

¨ RAW->RECO->AOD->miniAOD->nanoAOD
->custom made

(Or not so flat) “flat ntuple”

Custom made ntuples
56

¨ For example CMS data, same for all other experiments,
is extremely complex

¨ Large files, distributed over several places in the world,
dozens of TB

¨ A skimming to get smaller files is always a good idea
¨ For easy access you either want to have a flat list of

variables, or
¨ Sometimes it is more convenient to define your own

object, classes i.e. a Electron, Jet etc.
¨ ROOT can learn this if you provide the class definition

with the necessary information, which are different for
each analysis/group

CMSSW root file
57

ROOT must know the class definition. This is done within CMSSW
Here we use a simpler example:

Exercise: Custom Made Trees

Get the class.h and the root file

~kruecker/public/sst2019_root/hoAnaTree.root

Write a 2 python macros Tree1.py Tree2.py:

¨ Load the classes.h within your python script

¨ Read in the file hoMuonAnalyzer/tree and
fill the first muon globMu[0] energy into a
histogram (50 bins 0-500GeV)

¨ Do it by a python loop as on p43

¨ Try a second way (tree2.py) and do it by
tree.Draw(“globMu[0].E()>>hist”) command

¨ Check the times (Do not show the histogram
when you take the time)

¨ Try the timing with the larger file
hoAnaTree_ZMu-PromptReco-v3.root

¨ Measure the time for the tree processing
within the scripts with timeit

¨ To execute commands as if you are at the ROOT
command line gInterpreter.ProcessLine('.L classes.h')

¨ Timing from the command line:
time python tree1.py

¨ The class globMu (global muons) are vectors of
4-vectors

¨ muon_energy = t.globMu[0].E()

¨ A python module for measure times
import timeit
start=timeit.timeit()
….
stop=timeit.timeit()
print sttop-start

58

https://root.cern.ch/courses
Have fun!

Material for this lecture:

/afs/desy.de/user/k/kruecker/public/sst2019_root

or at

https://desycloud.desy.de/index.php/s/RZgiy5fkHjtd5rf
Additional background:

https://en.wikipedia.org/wiki/ROOT

The End59

https://root.cern.ch/courses
https://desycloud.desy.de/index.php/s/RZgiy5fkHjtd5rf
https://en.wikipedia.org/wiki/ROOT

You love python?
Check out uproot:
https://indico.cern.ch/event/686641/contributions/2894906/attac
hments/1606247/2548596/pivarski-uproot.pdf
http://uproot.readthedocs.io/en/latest/root-io.html

new approaches60

https://indico.cern.ch/event/686641/contributions/2894906/attachments/1606247/2548596/pivarski-uproot.pdf
https://indico.cern.ch/event/686641/contributions/2894906/attachments/1606247/2548596/pivarski-uproot.pdf
http://uproot.readthedocs.io/en/latest/root-io.html

• Linux tutorial
• http://www.ee.surrey.ac.uk/Teaching/Unix/

• C++
• Tutorial http://www.learncpp.com/
• Tutorial and reference http://www.cplusplus.com/doc/tutorial/

• Python
• Interactive tutorial https://www.codecademy.com/en/tracks/python
• Tutorial

• Git
• Introduction https://guides.github.com/activities/hello-world/
• Interactive tutorial http://pcottle.github.io/learnGitBranching/

Useful Links61

http://www.ee.surrey.ac.uk/Teaching/Unix/
http://www.learncpp.com/
http://www.cplusplus.com/doc/tutorial/
https://www.codecademy.com/en/tracks/python
https://guides.github.com/activities/hello-world/
http://pcottle.github.io/learnGitBranching/

Windows
• e.g. http://mobaxterm.mobatek.net/
• mobaXterm->new session->ssh,server bastion.desy.de
Mac
• https://www.xquartz.org/
ssh –Y user@naf-XXX.desy.de (ask your supervisor for the name)
Web
• https://nafhh-x2.desy.de:3443/auth/ssh

connecting62

https://www.xquartz.org/
mailto:user@naf-XXX.desy.de

