PREPARING FOR THE sLHC: ACTIVITIES BY THE CEC

Wolfgang Lange, DESY Zeuthen

Outline

- Motivation and the CEC
- Scope of our activities
 - Sensor development and extensive testing
 - Data base development
 - Simulation
 - Advanced tracker modules
 - Cooling
 - Powering
- Distribution of work
- Status and future

Motivation and the CEC

CEC = Central European Consortium for sLHC Sensor Development

- sLHC tracker will be a challenge:
 - Higher rates (granularity of sensors, number of r/o channels)
 - Higher fluences (radiation hardness of sensors)
 - Need for trigger information from the tracker
 - Material budget (lighter and thinner design)
 - Powering and cooling
- 'foundation' of the CEC by F. Hartmann et.al., DESY joined in 2008

CEC

https://twiki.cern.ch/twiki/bin/view/CMS/CEC

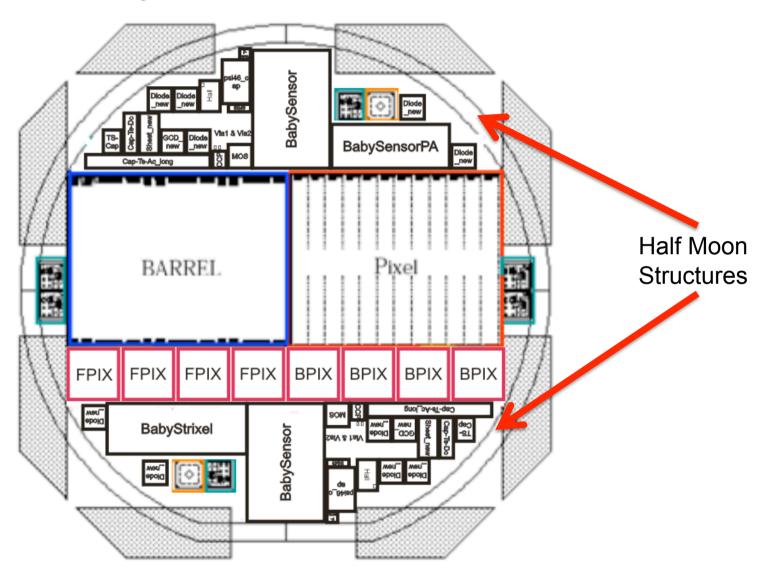
Members

Uni KA, Uni HH, DESY, RWTH Aachen, IHEPHY Wien, Louvain, UC-CSIC Santander, IET Warsaw, Uni Vilnius

Goal

of the Central Europe Consortium of institutes is to explore the available materials and technologies for silicon sensor modules and to develop them further in a coordinated effort for the upgrade of the CMS tracker at SLHC. The project is primarily focused on detector layers equipped with standard strip sensors and sensors with short strips (strixel). It should provide a solid basis for a final choice for the sensor material and should build and test a limited number of fully developed module geometries, including the interconnection scheme to the readout chips and the cooling. The studies should furthermore show to which maximum irradiation levels and occupancies – hence to what minimum detector radius – this technology can be implemented in a future tracker of CMS. All aspects are viewed from a common point with the goal to combine as much functionality as possible, like cooling, structure and electric elements.

Sensor Materials


Identification of relevant sensor technologies:

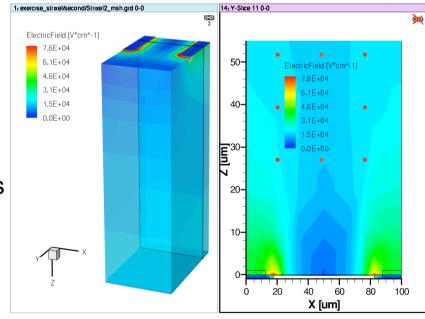
substrate type	FZ 200um	MCZ 200um		epi 100um	epi 75um	FZ 300um	Total
& Active Thickness	carrier	thinning	carrier				
P-on-N Production	6	6	6	6	6	6	36
N-on-P Production p-spray	6	6	6	6	6	6	36
N-on-P Production p-stop	6	6	6	6	6	6	36
2'nd metal production P-on-N	6						6
2'nd metal production N-on-P p-stop	6						6
2'nd metal production N-on-P p-spray	6						6
Total	36	18	18	18	18	18	126

Sensor Processing

- Hamamatsu Photonics (HPK) will produce test wafers with identical layout but different technologies.
- Special parts (test structures) of the wafers will be separated (cut). 'Half Moon'
- Test structures will be investigated in a combined irradiation and measurement campaign (organized by the CEC)
 - Different scenarios: SLHC proton, SLHC neutron, mixed irradiation
 - Always interleaved with measurements (Data base)
- Precise logistics needed

Sensor Layout

Sensor Measurements


- 'Calibration of participants' (cross calibration done this summer)
- Setups warm & cold (+20C & -20C)
 - Strip / Long pixel measurements (probe station)
 - TCT (Transient Current Technique: bulk properties, traps, space charge etc: test structures)
 - CCE ⁹⁰Sr (charge collection efficiency measured with a source: strips, strixels)
 - CV, IV (current vs. voltage and capacitance vs. voltage: sensors and test structures)
- Irradiation facilities, precise annealing oven
- Measurement equipment
 - LCR 100Hz 1MHz
 - Electrometer, pA-Meters
 - Power Supply > 1000V
 - TCT setup
 - Readout a la CMS or ALIBAVA or equivalent (wanted ~25ns shaping time)
 - Cold chuck in semi-automatic probe station (measurement of subsequent strips)
 - Switching matrix

Data Base, Simulation

- SQL based Data Base is currently being developed: all measurements and sensor treatments will be stored there
- Simulation of the semiconductor behaviour is simulated:
 - Comparison between simulation and measurement will improve our understanding of radiation damage and annealing
 - Simulation is also 'cross calibrated' (Louvain, KA, HH, Zeuthen)

Example:

Simulation of the distribution of the electric field in silicon sensor material (strip implants on the top)

Tracker Modules – Improvements

Sensors

Reduce thickness from 320um/500um to 200um

Electronics

- Thinner front-end chips
- Smaller size of front-end chips
- Integrate Pitch-Adapter in Sensor
- Larger number of r/o channels → more front-end chips
- Higher power consumption

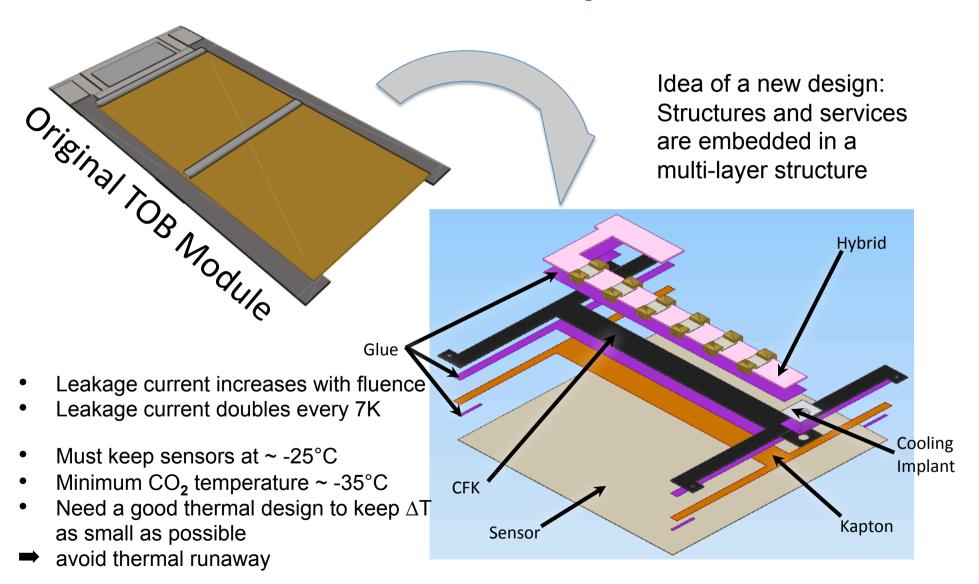
Cables

- Re-use existing cables → powering scheme (DC/DC, serial)
- Probably no improvements possible

Cooling

- Switch from C₆F₁₄ to CO₂ cooling
- Improvement already due to coolant
- Improvement due to smaller pipe diameters (1x1.6)

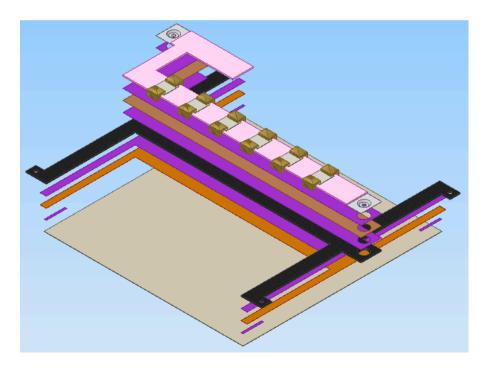
Grey - support


Blue - cooling

Red – cables

Green - electronics

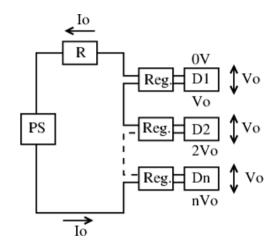
Brown - sensors


Tracker Modules – Improvements

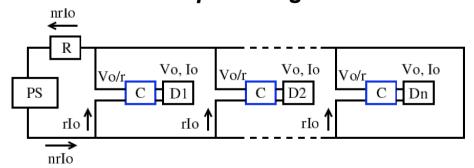
Tracker Modules – Simulations

- Single cooling strip in middle of sensor implies cooling pipe running under sensor
- more material
- Alternative: Cooling pipe on the sides of sensor
- same as in current tracker
- Improve temperature gradient by "fancy" materials with high and selective heat

conductivity



 $\Lambda T = 22 K$


Tracker Modules – Powering

- External (outside CMS) regulation of supply voltages introduce high losses in the cables ($P = I^{2*}R$)
- Two alternative approaches:
 - Serial powering (modules connected in series)

$$V_{drop} = R \cdot I_0$$
$$P_{drop} = R \cdot I_0^2$$

Parallel powering with local DC/DC conversion

Conversion ratio $r = V_o / V_{in} < 1$

⇒ Lower input currents and power losses: $I_{in} = I_0 \cdot r$ and $P_{drop} = R_{cable} \cdot I_0^2 \cdot r^2$

Distribution of Work

- Aachen University, Germany module design, DC/DC powering
- Deutsches Elektronen-Synchrotron DESY, Germany
 - o Hamburg module design, 'thermal' and 'mechanical' simulation
 - Zeuthen measurement campaign (probe station), data base, simulation
- Institut für Experimentalphysik, Universität Hamburg, Germany simulation, measurement campaign (TCT, probe station)
- Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH), Germany measurement campaign (probe station, control), irradiation (p), simulation, module design
- Louvain, Belgium irradiation (n), simulation
- Instituto de Física de Cantabria (UC-CSIC), Santander, Spain sensor and test structure design (layout)
- Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, HEPHY, Vienna, Austria - measurement campaign (probe station), sensor layout
- Institute of Materials Science and Applied Research, Vilnius University, Lithuania ?
- Institute of Electron Technology, Warsaw, Poland sensor design, measurements

Status and Future

- CEC is a working collaboration
- Regular meetings
- Well defined and tight schedules
- Cross calibration for simulation and measurement campaign done
- Ready for HPK measurements and irradiation (spring 2010 > ?)
- Work on future tracker modules started, goal: prototype within a few years
- After HPK measurements recommendation for sensor technology planned

Thank You!