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What is QCD ?

Quantum Chromo Dynamics = quantum field theory of strong interactions 

Basic elements; 
● quarks: u,d,s,c,b,t 
● fractional charges 1/3 or 2/3 

● carry color: 
● anti-quarks carry anti-color:  
● exchange bosons are gluons 
● gluons couple to quarks, anti-quarks and gluons 
● gluons carry color+anti-color (but not in a color singlet):

r, g, b = white

rr̄ = white, gḡ = white, bb̄ = white

rḡ, rb̄, gr̄, gb̄,

r
1

2
(rr̄ � gḡ),

r
1

2
(rr̄ + gḡ � 2bb̄)
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Fixed Target, HERA & LHC
● HERA at DESY ● SPS & LHC at CERN

p
s
LHC

= 7� 14TeV

p
s
HERA

= 300GeV
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The general case
● Calculation of cross section of 

 

➔Start with jet production ....

A+B ! anything
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Picture of jet production
General approach to hard scattering processes 
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Picture of jet production
General approach to hard scattering processes 

including higher order parton radiation 
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Picture of jet production
General approach to hard scattering processes 

including higher order parton radiation 

adding hadronization and fragmentation 



Hannes Jung, Introduction to Monte Carlo simulation, DESY, 2019 �9

Picture of jet production

➔ factorization ansatz is used in 

any calculation (LO,NLO, MC event generators ...)

General approach to hard scattering processes 

including higher order parton radiation 

adding hadronization and fragmentation 

➔ leads to the concept of factorization: 

� =f(x1, µ
2)

⌦
�̂(x1, x2, µ

2)

⌦
f(x2, µ

2)
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How can processes be calculated ?
Monte Carlo method  
● refers to any procedure that makes use of random numbers 
● uses probability statistics to solve the problem 

Monte Carlo methods are used in:  
● Simulation of natural phenomena	  
● Simulation of experimental apparatus 
● Numerical analysis
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Monte Carlo method
Monte Carlo method  
● refers to any procedure that makes use of random numbers 
● uses probability statistics to solve the problem 

Monte Carlo methods are used in:  
● Simulation of natural phenomena	  
● Simulation of experimental apparatus 
● Numerical analysis 

Random Numbers 
● one of them is 3 
● No such thing as a single random number 
● A sequence of random numbers is a set of numbers that have nothing to 

do with the other numbers in a sequence
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Random Numbers
In a uniform distribution of random numbers in [0,1] every number has the same 
chance of showing up 

Note that 0.000000001 is just as likely as 0.5

      To obtain random numbers: 
● Use some chaotic system like roulette, lotto, 6-49, ... 
● Use a process, inherently random, like radioactive decay 
● Tables of a few million truly random numbers exist ..... 
 (.....until a few years ago.....)  
  BUT not enough for most applications  

➔.... we have true random number generators ...
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Generating distributions
Brute Force or Hit & Miss method 

● use this if there is no easy way to find a analytic integrable function 

● find c≤ maxf(x)   

● reject if f(xi) ≤ uj ⋅ c  

● accept if f(xi) ≥ uj ⋅ c 
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Generating distributions: Hit & Miss

MC for function f(x): 
  get random number:  

  R1 in (0,1) and R2 in (0,1)   
calculate x = R1 

reject event if: fx < fmax R2 
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Generating distributions: Hit & Miss

MC for function f(x): 
  get random number:  

  R1 in (0,1) and R2 in (0,1)   
calculate x = R1 

reject event if: fx < fmax R2 
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Generating distributions: Hit & Miss

MC for function f(x): 
  get random number:  

  R1 in (0,1) and R2 in (0,1)   
calculate x = R1 

reject event if: fx < fmax R2 

Works always: 
→	 but can be very inefficient 



Hannes Jung, Introduction to Monte Carlo simulation, summer-students 2019, DESY �17

Constructing a MC for e+ e{ → X 

process:  

goal: generate 4-momenta of     's, need 
cm energy s, 

   

  random number R1(0,1):  φ = 2 π R1 
  random number R2(0,1):  cos θ = -1 + 2 R2  
  

for every R1, R2 use weight with  
repeat many times  

d�

d cos ✓d�
=

↵2
em

4s

�
1 + cos2 ✓

�

e+e� ! µ+µ�

µ
cos ✓,�

d�

d cos ✓d�
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example from PYTHIA: Event listing 

technicalities/advantages 
can work in any frame 
Lorentz-boost 4-vectors back and forth 
can calculate any kinematic variable 
x-section:  
• fill histogram in any variable, no Jacobeans !

    I particle/jet KS     KF  orig    p_x      p_y      p_z       E        m 

    1 !e+!         21     -11    0    0.000    0.000   30.000   30.000    0.001 
    2 !e-!         21      11    0    0.000    0.000  -30.000   30.000    0.001 
 ============================================================================== 
    3 !e+!         21     -11    1    0.000    0.000   30.000   30.000    0.000 
    4 !e-!         21      11    2    0.000    0.000  -30.000   30.000    0.000 
    5 !e+!         21     -11    3    0.143    0.040   26.460   26.460    0.000 
    6 !e-!         21      11    4    0.000    0.000  -29.998   29.998    0.000 
    7 !Z0!         21      23    0    0.143    0.040   -3.539   56.458   56.347 
    8 !mu-!        21      13    7   -9.510    1.741   24.722   26.546    0.106 
    9 !mu+!        21     -13    7    9.653   -1.700  -28.261   29.913    0.106 
 ============================================================================== 
   10 (Z0)         11      23    7    0.143    0.040   -3.539   56.458   56.347 
   11 gamma         1      22    3   -0.143   -0.040    3.539    3.542    0.000 
   12 mu-           1      13    8   -9.510    1.741   24.722   26.546    0.106 
   13 mu+           1     -13    9    9.653   -1.700  -28.261   29.913    0.106 
 ============================================================================== 
                   sum:  0.00         0.000    0.000    0.000   60.000   60.000 

Example event for e+e� ! X



!19

From            to hadron scattering …  
   

… add a hadron in the initial state: 
     scattering

e+e�

ep
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A proton in the initial state 
● Deep Inelastic Scattering is a 

incoherent sum of 

● only 50 % of p momentum carried by 
quarks 

● need a large gluon component  
● partonic part convoluted with parton 

density function  

e+q ! e+ q

fi(x)

�(e+p ! e+X) =
X

i

fi(x,Q
2)�(e+qi ! e+qi)
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A proton in the initial state 
● Deep Inelastic Scattering is a 

incoherent sum of 

● only 50 % of p momentum carried by 
quarks 

● need a large gluon component  
● partonic part convoluted with parton 

density function  
● BUT we know, PDF depends on 

resolution scale  

e+q ! e+ q

fi(x)

Q2

�(e+p ! e+X) =
X

i

fi(x,Q
2)�(e+qi ! e+qi)
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F2(x,Q2): DGLAP evolution equation

➔ Probability to find 
parton at small x 
increases with Q2

F2 = 

➔ Test of theory: Q2 evolution of F2(x,Q2) !!!!!

● QPM: F2 is independent of Q2 

● Q2  dependence of structure function: DokshitzerGribovLipatovAltarelliParisi
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From Naïve F2 picture to QCD ...
From Halzen & Martin: Quarks & Leptons, p201
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Lepton Hadron scattering
Deep Inelastic Scattering is a incoherent sum of  

only 50 % of p momentum carried 

    by quarks 

need a large gluon component 

e+q ! e+ q

�(e+p ! e+X) =
X

i

fi(x,Q
2)�(e+qi ! e+qi)
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Lepton Hadron scattering
e+q ! e+ q

�(e+p ! e+X) =
X

i

fi(x,Q
2)�(e+qi ! e+qi)

Deep Inelastic Scattering is a incoherent sum of  

only 50 % of p momentum carried 

    by quarks 

need a large gluon component 
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Inelastic Scattering: main results

F2 scaling at large x 

~ 50 % gluons 

F2 rise at small x 

• How can rising F2 be 
understood ? 

• Does rise continue 
forever ? 

• What limits F2 ?
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From ep scattering … 

  … to pp scattering
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Rotating the diagrams

�(e+e� ! qq̄) = 3
4⇡↵2

3s
e2q �(qq̄ ! l+l�) =

4⇡↵2

3⇥3s
e2q
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Monte Carlo approach
simulate explicitly parton radiation with 
evolution of parton densities 

advantage to include properly energy 
momentum conservation in each step 

perform resummation numerically
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Jet production in pp
x-section (i.e. for light and heavy quarks (     ) 
production) 

with gluon densities  

hard x-section:

tt̄

�(pp ! qq̄X) =

Z
dx1

x1

dx2

x2
x1G(x1, q̄)x2G(x2, q̄)⇥ �̂(ŝ, q̄)

xG(x, q̄)

d�

dt
=

1

64ŝ2
|Mij |2
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Lowest Order Diagrams
Ellis, Stirling, Webber 
QCD & collider physics p248 

qq0 ! qq0

qq ! qq

qq̄ ! gg

gg ! gg
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Color Flow in pp
quarks carry color 

anti-quarks carry anti-color 

gluons carry color – anti-color 

• connect to color singlet systems 

• watch out        or  

pp ! qq̄ +X

pp pp̄
http://www.desy.de/~jung/qcd_and_mc_2015
http://www.desy.de/~jung/qcd_and_mc_2015
http://www.desy.de/~jung/qcd_and_mc_2015
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Jet production at the LHC
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What happens at highest 
energies ? 

High energy behavior of xsections 
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Partonic Cross sections
● Cross section

● partonic cross section diverges 
with p⟂ 


● calculate x-section as function 
of p⟂, min 

�(p1 + p2 ! j1 + j2 +X) = f(x1, µ
2)⌦

�̂(x1p1 + x2p2 ! j1 + j2)

⌦f(x2, µ
2)
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Partonic Cross Section
Basic partonic perturbative cross 
section 

diverges faster than 1/p2
⟂,min  as p⟂,min   

and exceeds eventually total 
inelastic (non-diffractive) cross 
section  Interaction x-section 

exceeds total xsection 
  happens well above  
  in perturbative region 

�QCD
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Models for Multi-Parton Interaction
● The very simple model 

➔  add secondary interactions 

➔  first model by: T. Sjostrand, M. Zijl PRD 36 
(1987) 2019 

● order scatterings in pt 

➔  use of sudakov form factor 

➔  result in Poisson distribution of number 
of scatterings: 

      with pr =
µr

r!
exp (�µ)

µ = hni = 1

�nd

Z p?max

p?min

d�hard

dp0?
dp0?
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Multiparton interaction at the LHC

arXiv:1312.6440 
CMS-FSQ-12-013

no MPI
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Partonic Cross Section
Basic partonic perturbative cross 
section 

diverges faster than 1/p2
⟂,min  as p⟂,min   

and exceeds eventually total 
inelastic (non-diffractive) cross 
section  Interaction x-section 

exceeds total xsection 
  happens well above  
  in perturbative region 

�QCD


