– IceCube – Abenteuer Forschung am Südpol

Auf der Suche nach kosmischen Neutrinos

Tilo Waldenmaier

Lehrerfortbildung DESY Zeuthen, 16. November 2009

Was sind Neutrinos?

Neutrinos wechselwirken nur schwach und gravitativ

- \rightarrow Schwer nachzuweisen
- → Große Reichweiten

"Kosmische Boten"

 $1 J = 0,62 \times 10^{19} eV = 6 EeV$

Hochenergie Neutrino-Astronomie

Fragestellungen:

- Quellen der hochenergetischen Kosmischen Strahlung
- (Beschleunigungs-) Mechanismen in astrophysikalischen Objekten:
 - Photonen \rightarrow Von Hadronen oder Elektronen
 - Neutrinos \rightarrow Nur von Hadronen

$$p + N \rightarrow \pi^{+}, \pi^{-}, \pi^{0}, \dots$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \gamma + \gamma$$

$$\downarrow \qquad \downarrow \qquad \mu^{-} + \overline{v_{\mu}}$$

$$\downarrow \qquad \qquad \mu^{+} + v_{\mu}$$

- → Komplementäre Information zu Gamma-Strahlung
- → Multi-Messenger Programme: Gleichzeitige Beobachtung von Gammas + Neutrinos
- → Weit entfernte Objekte möglicherweise nur durch Neutrinos erkundbar

Detektion hochenergetischer Neutrinos

Neutrinoteleskope Weltweit

Reise zum Südpol

Am Südpol

Amundsen-Scott Station

Der IceCube Detektor

Der IceCube Detektor

IceTop:

- Luftschauer Detektor
- Veto und Kalibrierung f
 ür IceCube
- ➢ 80 Stationen mit je 2 Eis-Tanks
- 2 DOMs pro Tank mit unterschiedl. Verstärkungsfaktoren
- Stationsabstand: ~ 125 m
- Fläche: ~ 1 km²

Digitales Optisches Modul

- Minimiere Signalverlust
- Minimiere Anzahl der Auslesekanäle (Kabel)
- Minimiere Datenaufkommen
- \rightarrow PMT mit integrierter HV-Versorgung
- → Digitalisierung
- → Lokale Koinzidenz mit Nachbarn
- → Kalibrierung und Tests
- → Autonome Steuerung

Funktionsweise eines Photomultipliers (PMT):

15

DOM

Bohrung und Installation

Datenaufnahme

Wo alles Zusammenläuft: IceCube Lab

Nachweisprinzip

Bei (schwachen) Wechselwirkungen von hochenergetischen Neutrinos mit der umgebenden Materie entstehen hochrelativistische geladene Teilchen die **Cherenkov-Licht** emittieren. **Dieses Licht kann nachgewiesen werden**.

 \bullet geladenes Teilchen mit v > c/n

 \rightarrow Unterscheidung der drei Neutrinotypen durch charakteristische Signaturen im Eis

Myon-Neutrino Signatur

- Gerade Spur aus Richtung des Neutrinos (Winkelauflösung < 1°)
- Wechselwirkung kann außerhalb des aktiven Detektors geschehen

 größeres Nachweisvolumen
- Hoher Untergrund von Myonen aus der Kosmischen Strahlung
 Schaue nach unten!

Elektron-Neutrino Signatur

- Gute Energiemessung (kalorimetrisch)
- Schlechte Richtungsbestimmung
- Wechselwirkung muß im aktiven Detektor stattfinden

Tau-Neutrino Signatur

$$\nu_{\tau} + {}^{A}_{Z}X \rightarrow {}^{A}_{Z\pm 1}X + \tau^{\mp} (\tau_{\tau} = 2,9 \times 10^{-13} \text{ s})$$

$$\downarrow \downarrow l^{\mp} + \nu_{l} + \nu_{\tau}$$

$$\downarrow \bullet \text{ e.m. Kaskade / }\mu\text{-Spur}$$

$$\downarrow Hadronische Kaskade$$

$$V_{\tau}$$

$$I = 0$$

- \bigcirc "Double-Bang" Signatur \rightarrow Niedriger Untergrund
- Sichtungsbestimmung möglich

Wechselwirkung muß im aktiven Detektor stattfinden

Spur-Rekonstruktion

- Berechne Zeitunterschiede zwischen gemessenen Signalen und erwarteter Ankunftszeit für hypothetische Teilchenspur.
- Variiere Teilchen-Spur bis die beste Übereinstimmung zwischen Messung und Erwartung gefunden ist
- → Finde das Minimum der Log-Likelihood Funktion:

$$L = -\sum_{i} \log(P(\vec{r}_i, t_i \mid \vec{r}_\mu, \theta_\mu, \varphi_\mu, t_\mu))$$

- → Winkelauflösung < 1°
- → Wichtig: Gute Kalibrierung (Geometry, Zeit, Ladung) des Detektors und gute Kenntnis der Eiseigenschaften (Steuung, Absorption)

Optische Eigenschaften des Eises

- Streuung an Staub und Blasen im Eis
- Absorption durch Staub und das Eis selbst.
- Staubschicht zw. 2000 und 2100 m Tiefe
- Intensive Messungen mit Kalibrationslichtquellen, präzisen Muonenspuren oder Auswertung von Bohrkernen.

Der Luftschauer-Detektor IceTop

IceTop Zielsetzungen

- Veto gegen Muonen aus der Kosmischen Strahlung (1)
- (2)Cross-Kalibrierung von IceCube (Timing, Richtung, Energie)
- (3)Messung des Energiespektrums der Kosmischen Strahlung und Untersuchung der Elementzusammensetzung zwischen ca. 1 PeV und 1 EeV

10³

10

6

10

10

10⁵

IceTop

10

10

Energiespektrum der Kosmischen Strahlung

11

10

10

10 Energie pro Kern E (GeV)

Koinzidente Ereignisse

Bestimmung der "Masse" (schwer mittel, leicht) des Primärteilchens aus dem Verhältnis zwischen nachgewiesenen Muonen im Eis und der an der Oberfläche gemessenen Energie.

Koinzidentes Ereignis

Die IceCube Kollaboration

USA:

Bartol Research Institute, Delaware University of California, Berkeley University of California, Irvine Pennsylvania State University **Clark-Atlanta University Ohio State University** Georgia Tech **University of Maryland** University of Alabama, Tuscaloosa University of Wisconsin-Madison University of Wisconsin-River Falls Lawrence Berkeley National Lab. University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage

Schweden: Uppsala Universitet Stockholm Universitet

Großbritannien: Oxford University

Niederlande: Utrecht University

Schweiz:

Deutschland:

DESY-Zeuthen Universität Mainz Universität Dortmund Universität Wuppertal Humboldt Universität MPI Heidelberg RWTH Aachen

Belgien: Université Libre de Bruxelles

Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut Japan: Chiba University

33 Institute, ~250 Mitglieder http://icecube.wisc.edu Neuseeland: University of Canterbury

