

Searches for an exotic decay of the Higgs boson to a pair of pseudoscalars in CMS

Danyer Pérez Adán

On behalf of the CMS collaboration

Image: A math a math

Outline

Motivation

- $h(125)
 ightarrow a_1 a_1$ searches in CMS at 13 TeV
 - Resolved Topology
 - $h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \mu \mu$
 - $h(125) \rightarrow a_1 a_1 \rightarrow bb \tau \tau$
 - $h(125) \rightarrow a_1a_1 \rightarrow bb\mu\mu$
 - Boosted Topology
 - $h(125) \rightarrow a_1 a_1 \rightarrow \mu \mu \mu \mu$
 - $h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \tau \tau$
- Summary of the results
- Conclusion

Danyer Pérez Adán	Da		Pérez	
-------------------	----	--	-------	--

イロト イヨト イヨト イヨト

Motivation

The 125 GeV Higgs boson

$BR_{BSM} < 34\%$

Combined ATLAS and CMS coupling analysis for the Run1 Data

2HDM

- One of the simplest possible extensions of the SM
- They play an important role in:
 - Supersymmetry: holomorphy and cancellation of anomalies
 - Axion models: imposing Peccei and Quinn symmetry only possible if there are two Higgs doublets
 - Baryon asymmetry: it could contain additional sources of CP violation

However, 2HDMs are by now strongly constrained from existing data

2HDM+S

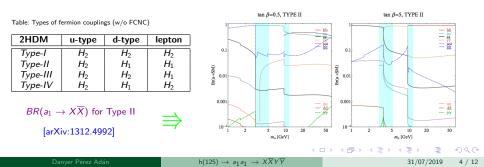
- The current constraints can be avoided by:
 - assuming that the 2HDM is in the decoupling limit $\alpha \rightarrow \beta \frac{\pi}{2}$ the couplings of h(125) become SM-like or very close to SM-like
 - adding one complex scalar singlet $S = \frac{1}{\sqrt{2}}(S_R + iS_I)$ it only couples to $H_{1,2}$ and it is allowed to have small mixing with these

[arXiv:1606.02266]

Motivation

Light Pseudoscalar (a_1)

• The 2HDM+S contains 7 physical states:

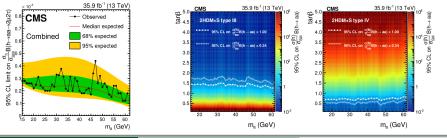

2 charged (H^+,H^-) , 3 CP-even (h_1,h_2,h_3) and 2 CP-odd (a_1,a_2)

 a_1 is the mostly-singlet-like pseudoscalar $a_1 = cos(heta_{a_1})S_I + sin(heta_{a_1})A$ $heta_{a_1} \ll 1$

• There exist scenarios in which a_1 is lighter than the SM-like Higgs, namely:

$$m_{a_1} < rac{m_{h(125)}}{2} pprox$$
 63 GeV

in this case, there are exotic Higgs decays of the form: $h(125) \rightarrow a_1a_1 \rightarrow X\overline{X}Y\overline{Y}$


Resolved Topology

$h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \mu \mu$

- Mass range probed: $15.0 < m_{a_1} < 62.5 \text{ GeV}$
- Production modes of h(125) considered: gluon fusion (ggH) and vector boson fusion (VBF)
- $h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \tau \tau \tau$ events are also treated as part of the signal by means of the relation:

$$\frac{B(a_1 \to \mu\mu)}{B(a_1 \to \tau\tau)} = \frac{m_\mu^2 \sqrt{1 - (2m_\mu/m_{a_1})^2}}{m_\tau^2 \sqrt{1 - (2m_\tau/m_{a_1})^2}}$$
(1)

- Four different final states were covered: $\mu\mu + e\mu$, $\mu\mu + e\tau_h$, $\mu\mu + \mu\tau_h$ and $\mu\mu + \tau_h\tau_h$
- Signal extraction: unbinned maximum-likelihood fit based on the $m_{\mu\mu}$ distribution
- The shape and yield of the backgrounds are estimated from data

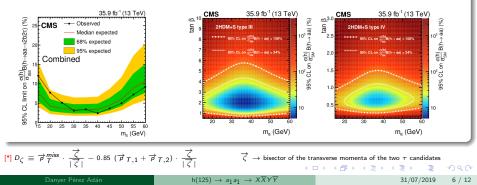
31/07/2019 5 / 12

[arXiv:1805.04865]

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$

Resolved Topology

$h(125) \rightarrow a_1 a_1 \rightarrow b b \tau \tau$

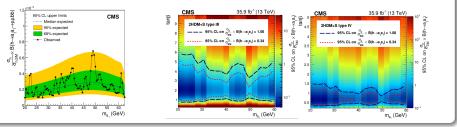

- Mass range probed: $15 < m_{a_1} < 60 \text{ GeV}$
- Production modes of h(125) considered: ggH, VBF and associated vector boson (VH)
- Three different final states were covered: $b_{tagged \ge 1} + e\mu$, $b_{tagged \ge 1} + e\tau_h$ and $b_{tagged \ge 1} + \mu\tau_h$

[arXiv:1805.10191]

• Categorization (4 cats.) according to the variables:

 $m_{b\tau\tau}^{vis} \qquad m_T(e(\mu), \overrightarrow{p}_T^{miss}) \qquad m_T(\mu(\tau_h), \overrightarrow{p}_T^{miss}) \qquad D_{\zeta}[*]$

- Signal extraction: binned maximum-likelihood fit based on the $m_{ au au}^{
 m vis}$ distribution
- The backgrounds are estimated from a combination of simulation and data


Resolved Topology

$h(125) ightarrow a_1 a_1 ightarrow bb \mu \mu$

- Mass range probed: $20.0 < m_{a_1} < 62.5 \text{ GeV}$
- Production modes of h(125) considered: ggH and VBF
- Final state: $b_{tagged} b_{tagged} + \mu \mu$
- Events are selected if they have $\chi^2 < 5$:

 $\chi^2 = \chi_{bb}^2 + \chi_h^2 \qquad \qquad \chi_{bb} = \frac{m_{bb} - m_{\mu\mu}}{\sigma_{bb}} \qquad \qquad \chi_h = \frac{m_{\mu\mu}bb - m_h}{\sigma_h}$

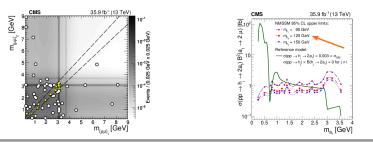
- Categorization (3 cats.) according to the b tagging discriminator value of one of the jets: Tight-Tight Tight-Medium Tight-Loose
- Signal extraction: unbinned maximum-likelihood fit based on the m_{µµ} distribution
- The background estimation fully relies on data by using the discrete profiling method

◆□▶ <□▷▶ < 문▶ < 문▶ · 문 · ♡</p>

[arXiv:1812.06359]

Danyer Pérez Adán

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$

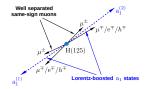

31/07/2019 7 / 12

Boosted Topology

$h(125) \rightarrow a_1 a_1 \rightarrow \mu \mu \mu \mu$

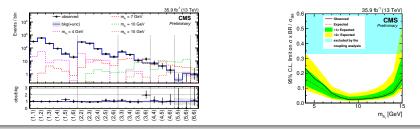
[arXiv:1812.00380]

- Mass range probed: $0.25 < m_{a_1} < 3.55$ GeV
- Production mode of h(125) considered: ggH
- Final state: $\mu\mu + \mu\mu$
- Events are selected if they fulfill the relation m_{(μμ)1} ≃ m_{(μμ)2}, as shown in the figure
- Signal extraction: unbinned maximum-likelihood fit based on the 2D $m_{(\mu\mu)1}$ vs. $m_{(\mu\mu)2}$ distribution
- The estimation of the main background contribution $(b\overline{b})$ is from data
 - ullet The prompt double J/ψ and electroweak backgrounds are modelled from data and simulation respectively
- * Total expected background events: $9.90 \pm 1.24(stat) \pm 1.84(syst)$

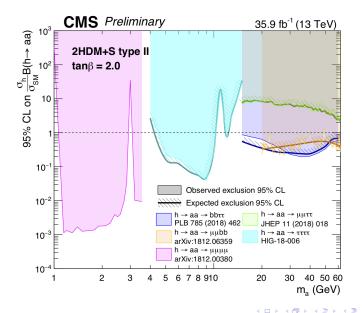


Observed events: 13

Boosted Topology


$h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \tau \tau$ NEW!

- Mass range probed: 4 $< m_{a_1} < 15$ GeV
- Production mode of h(125) considered: ggH, VBF, VH and top quark pair associated production (ttH)
- $h(125) \rightarrow a_1 a_1 \rightarrow \mu \mu \tau \tau$ events are also included as part of the signal by using Eq. 1
- Final state covered: $\mu^{\pm}\tau^{\mp}_{one-prong} + \mu^{\pm}\tau^{\mp}_{one-prong}$ (See sketch)
- Events are selected if they have exactly two isolated $\mu^{\pm} trk^{\mp}$ pairs within a cone of size $\Delta R = 0.5$



[CMS-PAS-HIG-18-006]

- Signal extraction: binned maximum-likelihood fit based on the 2D $m_{(\mu-trk)1}$ vs. $m_{(\mu-trk)2}$ distribution
- The background modelling is based on data, although some auxiliary tests also include simulation

Summary of the results

Danyer Pérez Adán

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$

31/07/2019 10 / 12

Conclusion

• • •

- Many $h(125) \rightarrow a_1 a_1$ searches performed in different decay channels and final states
- The searches cover a large variety of 2HDM+S models
 - Almost all possible masses for the *a*₁ boson have been probed, having to deal with different boosted regimes
 - · Scenarios comprising all types of fermion coupling have been tested
- No sign of $h(125) \rightarrow a_1 a_1$ decay yet ...
- · Limits are becoming more stringent as more data is added
- Other interesting analyses ongoing:
 - $h(125) \rightarrow a_1 a_1 \rightarrow bbbb$ (first time in CMS)
 - $h(125)
 ightarrow a_1 a_1
 ightarrow au au \mu \mu$ (for light a_1 masses)

イロト イヨト イヨト イヨト

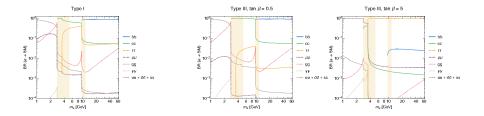
Conclusion

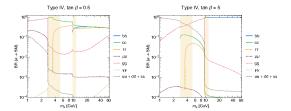
• • •

- Many $h(125) \rightarrow a_1 a_1$ searches performed in different decay channels and final states
- The searches cover a large variety of 2HDM+S models
 - Almost all possible masses for the a_1 boson have been probed, having to deal with different boosted regimes
 - · Scenarios comprising all types of fermion coupling have been tested
- No sign of $h(125) \rightarrow a_1 a_1$ decay yet ...
- Limits are becoming more stringent as more data is added
- Other interesting analyses ongoing:
 - $h(125) \rightarrow a_1 a_1 \rightarrow bbbb$ (first time in CMS)
 - $h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \mu \mu$ (for light a_1 masses)

Thanks for your attention!

Backup

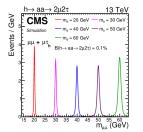

Danyer Pérez Adán

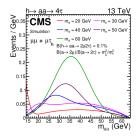

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$

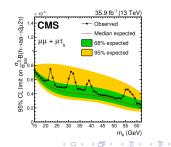
31/07/2019 13 / 12

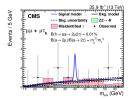
イロト イヨト イヨト イヨト

$BR(a_1 \rightarrow X\overline{X})$ for types of 2HDM+S models

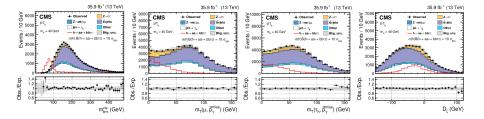

Danyer Pérez Adán

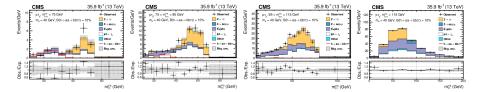

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$


★ ▲ 王 → 王 → ○ へ ○
 31/07/2019 14 / 12


<ロ> (日) (日) (日) (日) (日)

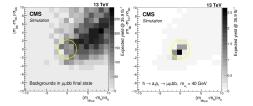
 $h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \mu \mu$

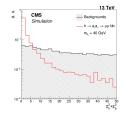




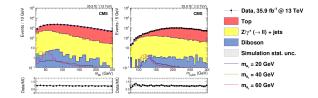
 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$

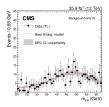
$h(125) \rightarrow a_1 a_1 \rightarrow b b \tau \tau$


▲ロト ▲圖ト ▲国ト ▲国ト 三国 - 釣Aの

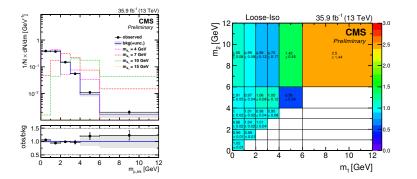

Danyer Pérez Adán

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$


31/07/2019 16 / 12


$h(125) \rightarrow a_1 a_1 \rightarrow b b \mu \mu$

イロト イヨト イヨト イヨト


Danyer Pérez Adán

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$

 $h(125) \rightarrow a_1 a_1 \rightarrow \tau \tau \tau \tau$

Background model constructed as:

 $f_{2D}(i,j) = C(i,j) \cdot (f_{1D}(i) \cdot f_{1D}(j))$ (2)

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $h(125) \rightarrow a_1 a_1 \rightarrow X \overline{X} Y \overline{Y}$