Signs for the onset of gluon saturation in exclusive photo-production of vector mesons at the LHC

Martin Hentschinski

Universidad de las Americas Puebla Ex-Hacienda Santa Catarina Martir S/N San Andrés Cholula 72820 Puebla, Mexico <u>martin.hentschinski@gmail.com</u>

in collaboration with **Krzysztof Kutak** (IPN Cracow) and **Alfredo Arroyo Garcia** (UDLAP)

Phys. Lett. B 795 (2019) 569-575 arXiv:1904.04394

Tuesday, July 23, 2019, DESY Hamburg

Outline

- 1. Motivation: the gluon at low x
- 2. Exclusive photo-production of vector mesons at HERA and LHC
- 3. How strong is the growth of the low density gluon?
- 4. Conclusions

Motivation: the gluon at low x

underlying mechanism:

- ⇒ long lived gluons radiate further small x gluons
- ⇒ power-like rise of gluon and sea-quark distribution

- proton made up of quanta that fluctuate in and out of existence
- at low x: fluctuations time dilated on scales of strong interactions

H1 and ZEUS

Perturbative QCD:

 $8 (1-7) \cdot x$

 $X' = Z \cdot X$

Manifest in DGLAP evolution:

splitting functions enhance low x region

$$\sum_{x} (1-z) \times P_{gg}(z), P_{qg}(z) \sim \frac{\alpha_s}{z}$$

 $\alpha_s^n \ln^n \frac{1}{x}, \quad \alpha_s^{n+1} \ln^n \frac{1}{x}$ LL NLL

Systematic resummation of logarithmic enhanced terms to all orders: BFKL

[Fadin, Lipatov, Kuraev, PLB429 (1998) 127], [Balitsky, Lipatov, Sov.J.Nucl.Phys. 28 (1978)]

[Fadin, Lipatov; hep-ph/ 9802290] [Camici, Ciafaloni; hep/ph/9707390]

BFKL can be used to resum DGLAP evolution

[Catani, Hautmann; hep-ph/9405388]

realization in (recent) pdf fits:

[Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli; 1710.05935]

direct application of high energy factorization:

- k_T dependent factorization of crosssections (vs. momentum fractions)
- x-dependence from *perturbative* BFKL evolution (+ collinear resummation)
- initial conditions: model & fit k_T distribution at large x

 $F_2(x,Q^2) = \int_0^\infty d\mathbf{k}^2 \int_0^\infty \frac{d\mathbf{q}^2}{\mathbf{q}^2} \Phi_2\left(\frac{\mathbf{k}^2}{Q^2}\right) \mathcal{F}_{\mathsf{BFKL}}^{\mathsf{DIS}}(x,\mathbf{k}^2,\mathbf{q}^2) \Phi_p\left(\frac{\mathbf{q}^2}{Q_0^2}\right)$

x-dependence

allows for fit of combined HERA data [MH, Salas, Sabio Vera; 1301.5283]

and describes Pomeron intercept $F_2 \sim x^{-\lambda}$

NLO BFKL descriptions:

[Kowalski, Lipatov, Ross, Watt; 1005.0355] [MH, Sabio Vera, Salas; 1209.1353]

10

М

100

it seems we understand the growth of the gluon distribution at low x

but there is one essential problem:

Saturation of gluon densities at low x

[Gribov, Levin & Ryskin Phys. Rept. 100 (1983)]

Color Glass Condensate effective theory: [McLerran, Venugopalan PRD 49 (1994) 3352]

- if continued forever, power like growth of gluon violates unitarity bounds
- power-like growth drives us eventually into region of high parton densities
- can show: high densities slow down/ stop growth of low x gluon: <u>saturation</u>

partons in theory: point-like particle

partons in DIS at hard scale Q: effective size 1/Q

• at some $x \ll 1$: partons will start to overlap \rightarrow high density effects become relevant/'recombination'

 implies: system characterized by an x-dependent saturation scale Q_s(x)

grows with energy & can reach in principle perturbative values

 $Q_s \sim x^{-\Delta}$

 of particular interest: collision which involve large nuclei

- densities (& therefore saturation scale) naturally enhanced
- but: difficult to verify effects directly (complexity!)

Phenomenological evidence: geometric scaling

saturation scale contains the entire x-dependence \rightarrow proton structure functions depend only on a single parameter τ instead of x and Q²

$$\sigma_{\gamma^* p}(x_i, Q^2) = \frac{1}{Q_0^2} F(\tau)$$

$$\tau = Q^2/Q_{\rm s}^2(x)$$

$$Q_{\rm s}^2(x) = Q_0^2(x/x_0)^{-\lambda}$$

- emergence of saturation scale also found in numerical solution of non-linear evolution equations for the high density region (BK, JIMWLK)
- Can use those equations as well as saturation models to fit e.g. low x HERA data
- Can use those fits to describe data *e.g.* de-correlation of forward di-hadrons/dijets
- various successful application to heavy ion collisions and description of high multiplicity events

Question:

→ Can we see the emergence of saturation it in a more direct way? As a consequence of evolution?

Exclusive photo-production of vector mesons at HERA and LHC

A process to explore the low x gluon at the LHC: exclusive photo-production of $J/\Psi s$

- hard scale: charm mass (small, but perturbative)
- reach up to x≥.5 10⁻⁶
- perturbative crosscheck: Υ (b-mass)
- measured at LHC (LHCb, ALICE, CMS) & HERA (H1, ZEUS)

our study:

- linear low x (BFKL) vs. nonlinear low x (BK)
- failure of BFKL = sign for BK
 → high & saturated gluon

details:

Y = In 1/x

BK evolution for dipole amplitude $N(x,r) \in [0,1]$ [related to gluon distribution]

kernel calculated in pQCD $\frac{dN(x,r)}{d\ln\frac{1}{x}} = \int d^2 r_1 K(r,r_1) \left[N(x,r_1) + N(x,r_2) - N(x,r) - N(x,r_1)N(x,r_2) \right]$

linear BFKL evolution = subset of complete BK

linear low x evolution as benchmark \rightarrow requires precision

USE: HSS NLO BFKL fit [MH, Salas, Sabio Vera; 1301.5283]

- uses NLO BFKL kernel
 [Fadin, Lipatov; PLB 429 (1998) 127]
 + resummation of
 collinear logarithms
- initial kT distribution from fit to combined HERA data

[H1 & ZEUS collab. 0911.0884]

$$G\left(x,\boldsymbol{k}^{2},M\right) = \frac{1}{\boldsymbol{k}^{2}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{d\gamma}{2\pi i} \hat{g}\left(x,\frac{M^{2}}{Q_{0}^{2}},\frac{\overline{M}^{2}}{M^{2}},\gamma\right) \left(\frac{\boldsymbol{k}^{2}}{Q_{0}^{2}}\right)^{\gamma}$$

re-introduce two scales: hard scale of process (M) and scale of running coupling (\overline{M})

 \hat{g} : operator in γ space!

$$\hat{g}\left(x,\frac{M^2}{Q_0^2},\overline{\frac{M}{M^2}},\gamma\right) = \frac{\mathcal{C}\cdot\Gamma(\delta-\gamma)}{\pi\Gamma(\delta)} \cdot \left(\frac{1}{x}\right)^{\chi\left(\gamma,\overline{\frac{M}{M^2}}\right)} \cdot \left\{1 + \frac{\bar{\alpha}_s^2\beta_0\chi_0\left(\gamma\right)}{8N_c}\log\left(\frac{1}{x}\right)\left[-\psi\left(\delta-\gamma\right) + \log\frac{M^2}{Q_0^2} - \partial_\gamma\right]\right\},$$

resummed NLO BFKL eigenvalue with optimal scale setting (\rightarrow modifies $\chi_1(\gamma)$):

$$\chi\left(\gamma, \frac{\overline{M}^2}{M^2}\right) = \bar{\alpha}_s \chi_0\left(\gamma\right) + \bar{\alpha}_s^2 \tilde{\chi}_1\left(\gamma\right) - \frac{1}{2} \bar{\alpha}_s^2 \chi_0'\left(\gamma\right) \chi_0\left(\gamma\right) + \chi_{RG}(\bar{\alpha}_s, \gamma, \tilde{a}, \tilde{b}) - \frac{\bar{\alpha}_s^2 \beta_0}{8N_c} \chi_0(\gamma) \log \frac{\overline{M}^2}{M^2}.$$

$$\chi_{RG}(\bar{\alpha}_{s},\gamma,a,b) = \bar{\alpha}_{s}(1+a\bar{\alpha}_{s})\left(\psi(\gamma)-\psi(\gamma-b\bar{\alpha}_{s})\right) - \frac{\bar{\alpha}_{s}^{2}}{2}\psi''(1-\gamma) - \frac{b\bar{\alpha}_{s}^{2}\cdot\pi^{2}}{\sin^{2}(\pi\gamma)} + \frac{1}{2}\sum_{m=0}^{\infty}\left(\gamma-1-m+b\bar{\alpha}_{s}-\frac{2\bar{\alpha}_{s}(1+a\bar{\alpha}_{s})}{1-\gamma+m} + \sqrt{(\gamma-1-m+b\bar{\alpha}_{s})^{2}+4\bar{\alpha}_{s}(1+a\bar{\alpha}_{s})}\right)$$

resums (anti-) collinear 'logs' (= γ -poles) of $\bar{\alpha}_s \chi_0(\gamma) + \bar{\alpha}_s \chi_1(\gamma) - \frac{1}{2} \bar{\alpha}_s^2 \chi'_0(\gamma) \chi_0(\gamma)$ [Salam; hep-ph/9806482], [Sabio Vera; hep-ph/0505128]

optimal scale setting $\rightarrow \gamma\text{-dependent}$ running coupling

$$\bar{\alpha}_s \left(\overline{M} \cdot Q_0, \gamma \right) = \frac{4N_c}{\beta_0 \left[\log \left(\frac{\overline{M} \cdot Q_0}{\Lambda^2} \right) + \frac{1}{2} \chi_0(\gamma) - \frac{5}{3} + 2 \left(1 + \frac{2}{3} Y \right) \right]},$$

also use parametrization of running coupling in the infra-red [Webber; hep-ph/9805484]

$$\alpha_s\left(\mu^2\right) = \frac{4\pi}{\beta_0 \ln\frac{\mu^2}{\Lambda^2}} + f\left(\frac{\mu^2}{\Lambda^2}\right), \quad f\left(\frac{\mu^2}{\Lambda^2}\right) = \frac{4\pi}{\beta_0} \frac{125\left(1 + 4\frac{\mu^2}{\Lambda^2}\right)}{\left(1 - \frac{\mu^2}{\Lambda^2}\right)\left(4 + \frac{\mu^2}{\Lambda^2}\right)^4},$$

gluon with non-linear terms: KS gluon [Kutak, Sapeta; 1205.5035]

- based on unified (leading order) DGLAP+BFKL framework [Kwiecínski, Martin, Stasto, PRD 56(1997) 3991]
- combined with leading order BK evolution [Kutak, Kwiecinski;hep-ph/0303209] [Kutak, Stasto; hep-ph/0408117]
- initial conditions: fit to combined [™] HERA data [H1 & ZEUS collab. 0911.0884]
- both non-linear and linear version available (= non-linearity switched off)

description of the exclusive photoproduction cross-section requires

- ✓ gluon distribution in the proton
- Coupling of gluon to photon-VM system
- Xtake into account diffractive nature of the process

diffractive nature of process: Need to relate 2 pictures

a) exclusive photo-production of vector mesons:

'uncut' Pomeron: diffractive/elastic scattering (amplitude level)

 $\mathcal{A}(s,t)$

b) proton structure functions:

'cut' Pomeron: high multiplicity events (total X-sec.)

$$\sigma_{\rm tot} = \frac{1}{s} \Im \mathsf{m} \mathcal{A}(s, t = 0)$$

Possible: imaginary part of scattering amplitude in forward limit t=0

the transition \rightarrow quark-antiquark dipole \rightarrow vector meson

$$W(r) = 2\pi r \int_0^1 \frac{dz}{4\pi} \; (\Psi_V^* \Psi)_T(r, z)$$

$$(\Psi_V^*\Psi)_T(r,z) = \frac{\hat{e}_f e N_c}{\pi z (1-z)} \left\{ m_f^2 K_0(\epsilon r) \phi_T(r,z) - \left[z^2 + (1-z)^2 \right] \epsilon K_1(\epsilon r) \partial_r \phi_T(r,z) \right\}$$

boosted Gaussian scalar wave function using Brodsky-Huang-Lepage prescription

$$\phi_{T,L}^{1s}(r,z) = \mathcal{N}_{T,L}z(1-z) \exp\left(-\frac{m_f^2 \mathcal{R}_{1s}^2}{8z(1-z)} - \frac{2z(1-z)r^2}{\mathcal{R}_{1s}^2} + \frac{m_f^2 \mathcal{R}_{1s}^2}{2}\right)$$

parameters from normalization and decay width [Armesto, Rezaeian; 1402.4831] (J/Ψ) and [Goncalves, Moreira, Navarra; 1408.1344] (Y)

Meson	$m_f/{ m GeV}$	\mathcal{N}_T	$\mathcal{R}^2/\mathrm{GeV}^{-2}$	$M_V/{ m GeV}$
J/ψ	$m_c = 1.4$	0.596	2.45	3.097
Υ	$m_b = 4.2$	0.481	0.57	9.460

how to relate the imaginary part of the scattering amplitude to experiment? (standard procedure for this kind of study)

a) analytic properties of scattering amplitude \rightarrow real part

$$\mathcal{A}^{\gamma p \to V p}(x, t = 0) = \left(i + \tan \frac{\lambda(x)\pi}{2}\right) \cdot \Im \mathcal{A}^{\gamma p \to V p}(x, t = 0)$$

with intercept
$$\lambda(x) = \frac{d \ln \Im \mathcal{M}(x, t)}{d \ln 1/x}$$

b) differential Xsection at t=0:

$$\frac{d\sigma}{dt} \left(\gamma p \to V p\right) \Big|_{t=0} = \frac{1}{16\pi} \left| \mathcal{A}^{\gamma p \to V p}(W^2, t=0) \right|^2$$

c) from experiment:

$$\frac{d\sigma}{dt}(\gamma p \to Vp) = e^{-B_D(W) \cdot |t|} \cdot \frac{d\sigma}{dt}(\gamma p \to Vp) \Big|_{t=0}$$

$$\sigma^{\gamma p \to V p}(W^2) = \frac{1}{B_D(W)} \frac{d\sigma}{dt} \left(\gamma p \to V p\right) \Big|_{t=0}$$

extracted from data

weak energy dependence from slope parameter

$$B_D(W) = \left[b_0 + 4\alpha' \ln \frac{W}{W_0}\right] \text{GeV}^{-2}.$$

Results I

- Ieading order wave function → don't control normalization (scale of α_s) $\Im \mathcal{A}^{\gamma p \to V p} \sim \alpha_s(\mu^2)$ $\Rightarrow \sigma^{\gamma p \to V p} \sim \alpha_s^2(\mu^2)$
- standard scale choices for dipole cross-sections (~external scales)→ very good description of energy dependence with both HSS and KS gluon
- premature (?) conclusion: non-linear dynamics is absent

How strong is the growth of the low density gluon?

A first hint from a previous BFKL study

[Bautista, MH, Fernandez-Tellez;1607.05203]

error band: variation of renormalization scale
 → in general pretty small = stability
 ...but error blows up for highest energies

does it mean something?

Inspection of the HSS dipole

after Fourier transform still 2 terms:

$$\sigma_{q\bar{q}}^{(\text{HSS})}(x,r) = \alpha_s \hat{\sigma}_{q\bar{q}}^{(\text{HSS})}(x,r),$$
$$\hat{\sigma}_{q\bar{q}}^{(\text{HSS})}(x,r) = \hat{\sigma}_{q\bar{q}}^{(\text{dom.})}(x,r) + \hat{\sigma}_{q\bar{q}}^{(\text{corr.})}(x,r),$$

running coupling corrections which do not exponentiate = a perturbative correction

$$\hat{\sigma}_{q\bar{q}}^{(\text{dom})}(x,r,M^{2}) = \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{d\gamma}{2\pi i} \left(\frac{4}{r^{2}Q_{0}^{2}}\right)^{\gamma} \frac{\bar{\alpha}_{s}(M \cdot Q_{0})}{\bar{\alpha}_{s}(M^{2})} f(\gamma,Q_{0},\delta,r) \left(\frac{1}{x}\right)^{\chi(\gamma,M^{2})}$$

$$\hat{\sigma}_{q\bar{q}}^{(\text{corr.})}(x,r,M^{2}) = \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{d\gamma}{2\pi i} \left(\frac{4}{r^{2}Q_{0}^{2}}\right)^{\gamma} \frac{\bar{\alpha}_{s}(M \cdot Q_{0})}{\bar{\alpha}_{s}(M^{2})} f(\gamma,Q_{0},\delta,r) \left(\frac{1}{x}\right)^{\chi(\gamma,M^{2})}$$

$$\times \frac{\bar{\alpha}_{s}^{2}\beta_{0}\chi_{0}(\gamma)}{8N_{c}} \log\left(\frac{1}{x}\right) \left[-\psi\left(\delta-\gamma\right) + \log\frac{M^{2}r^{2}}{4} - \frac{1}{1-\gamma} - \psi(2-\gamma) - \psi(\gamma)\right]$$

NLO BFKL kernel (BLM scale setting) + coll. resummation $\chi(\gamma, M^2) = \bar{\alpha}_s \chi_0(\gamma) + \bar{\alpha}_s^2 \tilde{\chi}_1(\gamma) - \frac{1}{2} \bar{\alpha}_s^2 \chi'_0(\gamma) \chi_0(\gamma) + \chi_{\rm RG}(\bar{\alpha}_s, \gamma, \tilde{a}, \tilde{b}).$

What is the problem?

2nd term = running coupling correction

$$\sigma_{q\bar{q}}^{(\text{HSS})}(x,r) = \alpha_s \hat{\sigma}_{q\bar{q}}^{(\text{HSS})}(x,r),$$
$$\hat{\sigma}_{q\bar{q}}^{(\text{HSS})}(x,r) = \hat{\sigma}_{q\bar{q}}^{(\text{dom.})}(x,r) + \hat{\sigma}_{q\bar{q}}^{(\text{corr.})}(x,r),$$

negative + enhanced by log(1/x) running coupling corrections which do not exponentiate = a perturbative correction

$$\hat{\sigma}_{q\bar{q}}^{(\text{corr.})}(x,r) = -\alpha_s^2 \ln\left(\frac{1}{x}\right) \hat{\sigma}_{q\bar{q}}^{(1)}(x,r)$$

→ at some (maybe very very small x), this will eventually dominate the leading term!

recall:

$$\Im \mathcal{A}^{\gamma p \to V p}(x, t=0) = \int_0^\infty dr W(r) \sigma_{q\bar{q}}(x, r)$$

compare dominant vs. correction & how they add up

turns out

the correction is small for HERA kinematics \rightarrow not a problem for the initial fit

.... but the correction dominates for small dipole sizes *r* at the smallest x values reached

how to cure it?

recall that the 2nd terms is a running coupling correction:

$$\hat{\sigma}_{q\bar{q}}^{(\text{corr.})}(x,r,M^2) = \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{d\gamma}{2\pi i} \left(\frac{4}{r^2 Q_0^2}\right)^{\gamma} \frac{\bar{\alpha}_s(M \cdot Q_0)}{\bar{\alpha}_s(M^2)} f(\gamma,Q_0,\delta,r) \left(\frac{1}{x}\right)^{\chi\left(\gamma,M^2\right)} \\ \times \frac{\bar{\alpha}_s^2 \beta_0 \chi_0\left(\gamma\right)}{8N_c} \log\left(\frac{1}{x}\right) \left[-\psi\left(\delta-\gamma\right) + \log\frac{M^2 r^2}{4} + \frac{1}{1-\gamma} - \psi(2-\gamma) - \psi(\gamma)\right]$$

problem arises for small dipole sizes

the troublemaker

natural solution to such problem: chose *r*-dependent running coupling scale = the inverse transverse size of the dipole $M^2 = \frac{4}{2} + w^2$ with $w^2 = 1.51 \text{ CeV}^2$

$$M^2 = \frac{4}{r^2} + \mu_0^2$$
 with $\mu_0^2 = 1.51 \text{ GeV}^2$

this has been used already:

scale choice used in IPsat dipole model [Bartels, Golec-Biernat, Kowalksi, hep-ph/0203258];

fit: [Rezaeian, Siddikov, Van de Klundert, Venugopalan; 1212.2974]

resum large log into running coupling → stabilize perturbative expansion

What does it imply for our description of data?

a small variation for the perturbative check = the Υ

the growth is slightly stronger

essentially a scale variation around the b-mass

- The J/ψ is still well described in the HERA region
 (W < 400GeV)→ expected since the correction was small for such x-values
- The (running coupling resummed) NLO BFKL overshoots however now the data→ classical signal for gluon saturation!

Do we see something no related to a non-linear effect?

→ turn off non-linear terms in the KS gluon (originally a separate fit with certain IR cut-off)

linear KS gluon \rightarrow growth too strong for both Y & J/ ψ \rightarrow non-linear terms are essential for KS description of data

most direct evidence for gluon saturation seen so far?

What have we seen so far?

- NLO BFKL (linear evolution) only describes data if (negative) perturbative corrections is larger than the leading term (= breakdown of expansion)
- Tame size of correction \rightarrow description of Y and J/ ψ in HERA region, growth too strong for J/ ψ at LHC
- non-linear KS gluon describes data & non-linear terms essential

→ What about other approaches?

schematic vs. reality

DGLAP:

- fit x-dependence + evolve from J/Ψ (2.4 GeV²) to Y (22.4 GeV²)
- DGLAP shifts large x input (low scales) to low x (high scales)
 + higher twist dies away fast in evolution
- →constrain pdfs, but don't learn about saturation (easily overseen)

reason: for dipole cross-section many gluons couple to dipole as if few

formal: dipole Xsection from 2 Wilson line correlator

high density effects entirely from low x evolution \rightarrow for DGLAP fitted to data!

+ high density effects in evolution twist suppressed (large N_c)

[Bartels, Kutak; 0710.3060]

₩-¥ evolution

log of IPsat model [Armesto, Rezaeian; 1402.4831]

H1, Z >0.95 (1997)

deviation of H1 power law fit [LHCb coll.; 1806.04076]

Possible limitations

- NLO accuracy for both non-linear evolution, wave functions for VM production + DIS fit highly desirable
- extraction of γp an own challenge (gap survival factors etc.)→ how well do we control the errors?

for this observable = this is how the onset of gluon saturation would like

 \rightarrow need to complete picture with more observable & higher theoretical accuracy;

- at an EIC: control photon virtuality (→ hard scale) = more precise comparison to DGLAP evolution
- saturation should manifest itself in many ways in particular the pT spectrum should reveal the existence of a saturation scale → dijets, 3 jets etc.
 = search for observables for which high density is more directly visible
- understanding higher order (=NLO) corrections and role of soft logarithms is just beginning → progress is needed

Summary and Conclusion

- NLO BFKL (linear evolution) only describes data if (negative) perturbative corrections is larger than the leading term (= breakdown of expansion)
- Tame size of correction \rightarrow description of Y and J/ ψ in HERA region, growth too strong for J/ ψ at LHC
- non-linear KS gluon describes data & non-linear terms essential
- → so far: most direct evidence for gluon saturation

Back up

HSS gluon = 2 terms

$$\hat{\sigma}_{q\bar{q}}^{(\text{HSS})}(x,r) = \hat{\sigma}_{q\bar{q}}^{(\text{dom.})}(x,r) + \hat{\sigma}_{q\bar{q}}^{(\text{corr.})}(x,r),$$

$$\hat{\sigma}_{q\bar{q}}^{(\text{dom})}(x,r,M^2) = \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{d\gamma}{2\pi i} \left(\frac{4}{r^2 Q_0^2}\right)^{\gamma} \frac{\bar{\alpha}_s(M \cdot Q_0)}{\bar{\alpha}_s(M^2)} f(\gamma,Q_0,\delta,r) \left(\frac{1}{x}\right)^{\chi(\gamma,M^2)}$$

$$\hat{\sigma}_{q\bar{q}}^{(\text{corr.})}(x,r,M^2) = \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{d\gamma}{2\pi i} \left(\frac{4}{r^2 Q_0^2}\right)^{\gamma} \frac{\bar{\alpha}_s(M \cdot Q_0)}{\bar{\alpha}_s(M^2)} f(\gamma,Q_0,\delta,r) \left(\frac{1}{x}\right)^{\chi(\gamma,M^2)}$$

$$\times \frac{\bar{\alpha}_s^2 \beta_0 \chi_0(\gamma)}{8N_c} \log\left(\frac{1}{x}\right) \left[-\psi\left(\delta-\gamma\right) + \log\frac{M^2 r^2}{4} - \frac{1}{1-\gamma} - \psi(2-\gamma) - \psi(\gamma)\right]$$

<u>core element:</u>

NLO BFKL eigenvalue with collinear resummation ('RG')

$$\chi\left(\gamma,M^{2}\right) = \bar{\alpha}_{s}\chi_{0}\left(\gamma\right) + \bar{\alpha}_{s}^{2}\tilde{\chi}_{1}\left(\gamma\right) - \frac{1}{2}\bar{\alpha}_{s}^{2}\chi_{0}'\left(\gamma\right)\chi_{0}\left(\gamma\right) + \chi_{\mathrm{RG}}(\bar{\alpha}_{s},\gamma,\tilde{a},\tilde{b}).$$

proton & dipole impact factors

$$f(\gamma, Q_0, \delta, r) = \frac{r^2 \cdot \pi \Gamma(\gamma) \Gamma(\delta - \gamma)}{N_c (1 - \gamma) \Gamma(2 - \gamma) \Gamma(\delta)}$$

