

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

WP6 : FEL Pilot Application

M. E. Couprie, F. Nguyen, G. Dattoli

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Tasks

- WP6.1 : Coordination and Communication (SOLEIL, ENEA)
- WP6.2 : FEL baseline cases (SOLEIL, ENEA, CNRS-LOA, UHH, Lille Univ.)
- WP6.3 : Undulator and technological development of equipments (SOLEIL, UHH, INFN, DESY, STFC)
- WP6.4 : Towards scientific applications (SOLEIL, ENEA, STFC, DESY)
- WP6.5 : Operational model (SOLEIL, DESY, INFN)

Milestones

MS4 : Electron beam baseline parameter for FEL application (SOLEIL) M6, published on intranet, DONE

MS5 : State-of-the-art of short period undulator (SOLEIL) M7, Activity report, DONE

MS17 : Models and scaling laws for plasma FEL dynamics (SOLEIL) M 20, Activity report, DONE

Deliverables

- D6.1 : Report on state-of-the-art of short period undulators, Report, Public, M12
- D6.2 : Models, scaling laws plasma FEL dynamics, Report, Public, M24
- D6.3 : Diagnostic requirements and technical approaches, Report, Public, M24
- D6.4 : Specific magnetic elements, Report, Public, M32
- D6.5 : FEL Scientific user workshop, Report, Public, M48

FEL pilot user meeting

Roma, June 17-18, 2019 https://indico.desy.de/indico/event/23123/overview

FEL simulations

Beam	saturation	line	pulse	photons per	brightness $\times 10^{30}$				
name	length [m]	width [%]	duration [fs]	pulse [10 ¹⁰]	$[s^{-1}(mm \times mrad)^{-2}(0.1\% bw)^{-1}]$				
Maynard-5	126	0.18	0.4	0.19	3.7) []	۱. r1	V	וידיז ת
Rossi-5	38	0.23	2	3.2	40	Λ_R [nm]	Λ_u [mm]	K	B ₀ [1]
10551-5	50	0.25	2	0.2	-TO	0.22	20	1.5	0.81
Marocchino-1	16	0.59	2	1.3	0.08	5.5	20	1.5	0.81
Rossi–1	28	0.25	2.4	2.3	0.5	1	I		I

Beam	saturation	line	pulse	photons per	brightness $\times 10^{30}$				
name	length [m]	width [%]	duration [fs]	pulse [10 ¹⁰]	$[s^{-1}(mm \times mrad)^{-2}(0.1\% bw)^{-1}]$				
Maynard-5	26	0.3	0.71	4.2	27.6	λ_{R} [nm]	λ_{μ} [mm]	K	B_0 [T]
Rossi-5	20	0.3	2.2	72	475	1.65	30	4.36	1.56
Marocchino-1	23	3.6	15	16	0.02	41	30	4.36	1.56
Rossi-1	16	0.54	7.8	31	0.86				

Results obtained with the full beam longitudinal dynamics: current, energy & energy spread proper longitudinal profiles, not only slice values, no Gaussian assumption!!!

Review for Instruments

Edit a Special Issue

FEL results

Special Issue "Status of The Eupraxia Design Study – Towards The Next Generation of Particle Accelerators"

Print Special Issue Flyer

Article

Free electron laser performance within the EuPRAXIA facility

Federico Nguyen ^{1,*}, Axel Bernhard ², Antoine Chancé ³, Marie-Emmanuelle Couprie ⁴, Giuseppe Dattoli¹, Christoph Lechner⁵, Alberto Marocchino⁶, Gilles Maynard⁷, Alberto Petralia¹, Andrea Renato Rossi⁸

- 1 ENEA – Frascati, Italy
- 2 Karlsruhe Institute of Technology - Karlsruhe, Germany
- 3 CEA-Irfu - Saclay, France
- 4 Synchrotron SOLEIL - Gif-sur-Yvette, France
- Version October 15, 2019 submitted to Instruments Deutsches Elektronen-Synchrotron DESY – Hamburg, Germany 5
- IWS Consulting IT Advisory Company Rome, Italy 6
- CNRS & Université Paris-Sud Orsay, France 7
- 8 INFN - Milan, Italy
- Correspondence: federico.nguyen@enea.it *

Some WP6 thoughts

WP6 remarks:

-FEL calculations at the end of the calculation chain:

=>data arrived when the post-docs already left. The schedule was more dictated by the Deliverable and Milestone Reports

-Scaling law analysis (PA + FEL) for the different schemes not completed (see G. Dattoli): It could have been interesting for deep understanding and enlightening the main trends

-Still not so easy to get nice FEL characteristics :

There has been a huge progress in the design of Plasma based beam getting close to the e beam requirements, however, only a few schemes can be selected.

=> For the FEL application, reaching even better e-beam quality than the targeted one in EuPRAXIA could be useful for enabling advanced FEL schemes: stability has to be guaranteed, to attract users!

Also, control of plasma electron beam quality is required.

- Still a huge « gap » between what has been presently achieved experimentally (so far no experimental demonstration of FEL effect with plasma acceleration) and test user facility at a European level

=> Intermediate experimental milestones should be achieved :

For example :

- test the different LPA configurations such as REMPI, Angel Pousa's one,
- get FEL results with steps in electron beam energy and photon wavelength
- Develop intermediate test facilities

 Keep also in mind that FEL users will go where the best photons are, whatever the facility is compact or not

 Besides « compactness », advantages of Plasma driven FEL has to be further investigated, such as the attosecond pulses with respect to what is already successfully achieved with conventional accelerators