

Jens Osterhoff for the WP9 team (with material by M. Ferrario, S. Romeo, P. Niknejadi, C. Lindstrøm) MPA, Plasma Accelerator Group, Accelerator Division

WP9 covered conceptual design for beam-driven EuPRAXIA case

Istituto Nazionale di Fisica Nucleare EuPRAXIA@SPARC_LAB Conceptual Design Report

INFN focussed on design for PWFA construction site at Frascati, DESY on high-average power aspects

Istituto Nazionale di Fisica Nucleare

Driver + Witness Beams simulated in T-St

1 GeV beam driven plasma acceleration S2E

tep	Beam	units	Driver-IN	Driver-OUT	Witness-IN	Witness-OUT
	Charge	pC	200	200	30	30
$\sigma_{y}=0.005 \text{ mm}$ 0.05 0.00 -0.05 10 20 $n/10^{3}$	σ_x	μm	8	6.4	1.47	1.42
	σ_y	μm	3.1	10	3.17	1.4
	σ_z	μm	52	50	3.85	3.8
	ε_x	mm mrad	2.56	4.1	0.6	0.96
	ε_y	mm mrad	4.8	11.4	0.55	1.2
	σ_{E}	%	0.2	20	0.07	1.1
Witness	Е	MeV	567	420	575	1030
	Best Slice					
	current	kA			2	2.0
	ε_x	mm mrad			0.59	0.57
	ε_y	mm mrad			0.58	0.62
	$\sigma_{\!E}$	%			0.011	0.034

5 GeV beam driven plasma acceleration

Plasma accelerator module: EuPRAXIA case

40 cm-long capillary (1.5 GV/m) (0.5 to 1.1 GeV case) 10^{16} cm⁻³ of the plasma density (E₀ ~ 13 GV/m)

- We are going to test the EuPraxia case by using the plasma module at SPARC_LAB
- We have already tested 10 cm-long capillary and now we are working ٠ on 20-cm long capillary (14-15 kV), but we have to optimize the discharge/density
- We expect to reach around 60 cm at maximum voltage around 35-40kV

20 cm long capillary 40kV (up to 60 cm) 20 cm long mm diam 10⁵

NOVEL 195 MM PLASMA CELL TO INCREASE ENERGY TRANSFER

First experiments with long source in August 2019

Goals

rgy

- > Drive depletion demonstration
- > Beam loading control
- > Efficiency maximization
- > Passive plasma beam dumps

FLASHFORWARD roadmap aims at 10 kW plasma booster stage

DESY. | Jens Osterhoff | Twitter: @FForwardDESY | Web: forward.desy.de | EuPRAXIA, Hamburg | October 16, 2019

WP9: ELECTRON-BEAM DRIVEN PLASMA ACCELERATOR STRUCTURES Summary

- INFN → EuPRAXIA@SPARC_LAB / DESY → High average power PWFA at FLASHForward
- To maximize synergies and success of EuPRAXIA in next project phase
 - need to clearly define common goals
 - execute a well planned fully coherent strategy
 - merge efforts to maximize cross-fertilization

INFN and DESY made significant progress within the scope of EuPRAXIA on beam-driven systems

WP9: ELECTRON-BEAM DRIVEN PLASMA ACCELERATOR STRUCTURES Summary

- INFN → EuPRAXIA@SPARC_LAB / DESY → High average power PWFA at FLASHForward
- To maximize synergies and success of EuPRAXIA in next project phase
 - need to clearly define common goals
 - execute a well planned fully coherent strategy
 - merge efforts to maximize cross-fertilization

INFN and DESY made significant progress within the scope of EuPRAXIA on beam-driven systems

