Young Researchers Integrability School 2020

Sunday, 9 February 2020 - Sunday, 16 February 2020

DESY Hamburg

Scientific Programme

Superconformal algebras and Representation heory

In his course we will discuss the possible superconformal algebras for SCFTs in 2, 4 and 6 dimensions. We will discuss the structure of their representations and constraints on correlation functions.

Lorenz Eberhardt obtained his PhD from ETH Zurich and is currently a
costdoctoral member at IAS Princeton. His work centers around 2d conformal field theory, in
connection with string theory and the AdS/CFT correspondence./span>

<span style="color:rgb(34, 34, 34); font-family:arial,helvetica,sans-serif;
font-size:small">Seiberg-Witten theory</pan></pan>

Mario Martone got his PhD from Cornell University in 2014 and is currently a post-doctoral scholar at the University of Texas at Austin. He has a broad range of interests, including Flavory and Higgs physics and Dark Matter. But he is primarily interested in studying formal aspects of superconformal field theories (SCFTs)./span>

Superconformal index

In this course we will introduce the
superconformal index in four dimensions. We will discuss how it allow us to perform different
nontrivial checks of varius conjectured dualities and describe its relation with two
dimensional topological theories on Riemann surfaces.

Abhijit Gadde got his PhD from Stony Brook University in 2011 and
after two postdocs at Caltech and IAS, he is currently a faculty member at TFIR. He had been
working on different aspects of strongly coupled quantum field theories and string theory. Most
recently, he has been interested in analytic results in conformal as well as superconformal field
theories.

The AGT correspondence

This course will describe the AGT correspondence, which relates many non-perturbative aspects of four-dimensional N=2 supersymmetric theories to certain two-dimensional conformal field theories. After a primer on 4d N=2 gauge theories and S-duality, I will explain how observables such as the four-sphere partition function are reproduced by two-dimensional correlators. The correspondence enriched by is extended various theory of the 4d (Wilson Hooft operators loops, 't loops. surface operators, domain walls), all of which have counterparts in 2d. I will discuss the correspondence between supersymmetric indices and 2d topological quantum theory, relating 3d N=2 theories and Chern-Simons theories.

Bruno Le Floch <span</pre>

style="font-family:arial,helvetica,sans-serif">mainly works style="color:#696969">theory, in particular on supersymmetric gauge theories and two dimensional conformal field Since 2018 he holds theories. style="font-family:arial,helvetica,sans-serif">position at the Institut Philippe Meyer (École Normale Supérieure, Paris), after three years at the Princeton Center for Theoretical Sciences.

<span style="color:rgb(34, 34, 34);
font-family:arial,helvetica,sans-serif">Chiral algebras</pan></pan>

One can obtain a two-dimensional chiral algebra, or vertex operator algebra, as a protected subsector of any four-dimensional N>1 SCFT In these lectures: we will review the construction of the chiral algebra, and the basic properties that follow from its four-dimensional origin we will also explore some of the construction of the chiral algebra, and the basic properties that follow from its four-dimensional origin we will also explore some of the consequences for four-dimensional physics.

Madalena Lemos got her PhD from Stony Brook University in 2015,
followed by a postdoc at DESY. She is currently a postdoctoral fellow at CERN, working on
non-perturbative aspects of (super)conformal field theories.