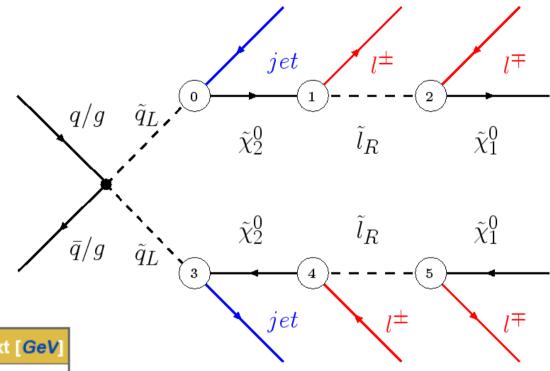
Kinematic Fits in the Leptonic Channel

Benedikt Mura Hamburg SUSY Meeting 04.10.2009

SPONSORED BY THE

Motivation


- Determine (or at least constrain) masses of SUSY particles
- Method: kinematic fit of certain decay topologies
 - Combine final states to yield intermediate particle masses
- Challenges:
 - Unknown LSP momenta
 - Combinatorial problem
 - Backgrounds from standard model & SUSY

- Leptonic signature vs.
 Hadronic channel
 - (Strongly) reduced combinatorics
 - Better momentum resolution w.r.t. Jets
 - Easier (standard model) background reduction
 - (Much) smaller branching ratios
 - Nothing for first data

Benchmarkpoint & Cascade

mSUGRA Parameters

	SPS1a	
m_0	100 GeV	
$m_{1/2}$	250 <i>GeV</i>	
A ₀ -100 Ge		
$\tan(\beta)$	10	
μ	>0	

Particle	Mass [GeV]	ΔM to next [GeV]
\tilde{g}	606	39 / 44
$ ilde{q}_L$	567 (ud) / 562 (cs)	387 / 382
$ ilde{\chi}^0_2$	180	37
$ ilde{l}_R^\pm$	143	46
$ ilde{\chi}_1^0$	97	

X-section: ~36 pb @ 14 TeV

Leptonic Cascade

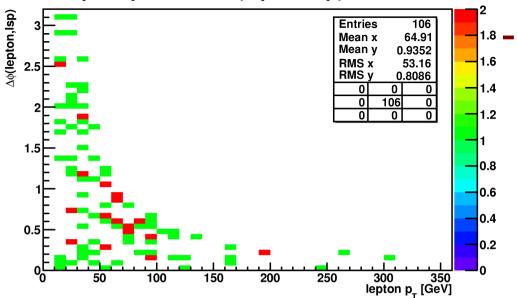
- 2 jets + 2x2 OSSF leptons
- 16/32 possible combinations
- $-BR = 1.7*10^{-3}$

Signal Selection

- Using generator info to pick the correct cascade
- Only accept generated events passing cuts after smearing with detector resolution (Toy MC)

Jets			Leptons		
N	p_T	$ \eta $	N	p_T	$ \eta $
4	>30 <i>GeV</i>	<3.5	2x2OSSF	>10 GeV	<2.5

 Using muons and electrons


- Selection Efficiency: 45%
- Fake Rate (if not using generator selection): 51%

Settings

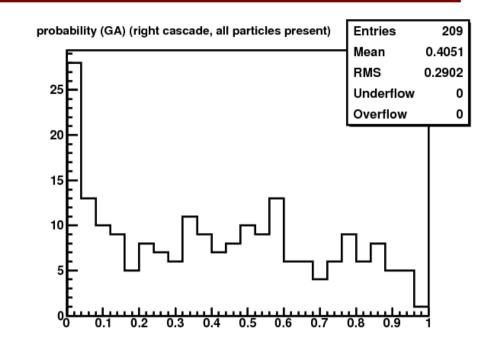
- LSP starting values
 - Take direction from 'last' lepton
 - Scale to fulfill slepton mass constraint
 - Only good approximation for higher lepton p₊
- Uncertainties on constraints taken from MC to obtain 'ideal'

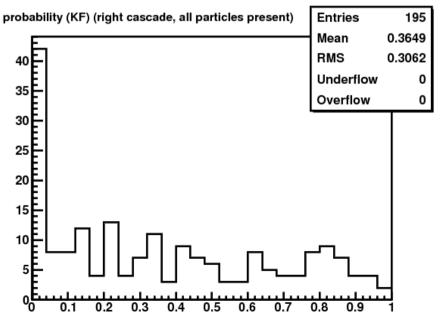
Uncertainty/Width	RMS [GeV]	New choice [GeV]
$\Gamma_{ar{q}_L}$	17.33	18.
$\Gamma_{ ilde{\chi}^0_2}$	0.45	0.5
$\Gamma_{ ilde{l_R}}$	0.56	0.5
$\Delta p_x/\Delta p_y$	24.73	25.0

lower lepton pT vs. dPhi(lepton,lsp)

KinFit Convergence criteria

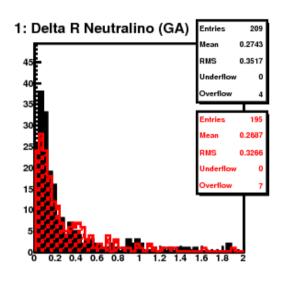
Iterations	Max. ΔS	Max. $ F $	Converging Fraction
100	0.1	no. of constr.	94%
100	0.01	no. of constr./10	47%
100	0.01	no. of constr.	82%

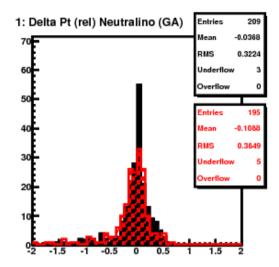

 GA Evolution Parameters (not yet varied)

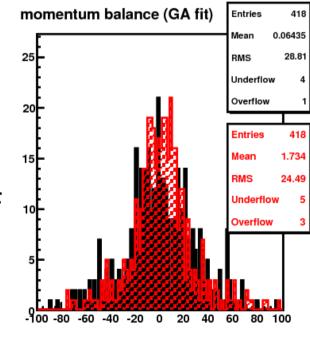

No. of children	200
No. of survivors	10
No. of generations	500

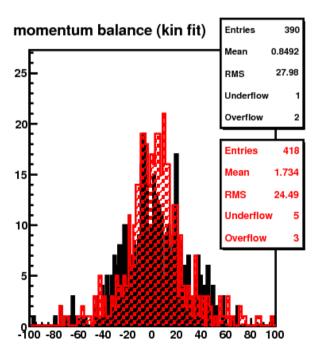
Time dependent mutation rate: 0.1+0.9*exp(-N_{generation}/30)

Fit w/o Combinatorics

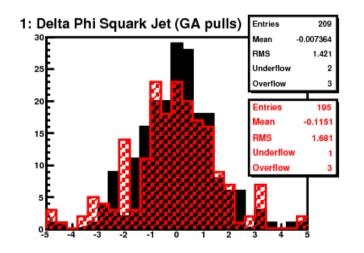

- Now using larger event sample (209 events)
- New 'convergence' criteria
- GA (longer evolution)
 - 500 generations
 - 1000 children
- KF (tighter conv. Criteria)
 - Max. 500 iterations
 - |F| < 0.1*NumConstr.

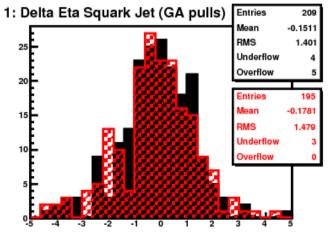


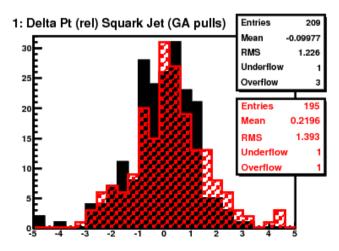

Performance


Similar resolution for fitted parameters in GA and KF

- Constraints well fulfilled
 - Improvement for KF due to tighter conv. criteria

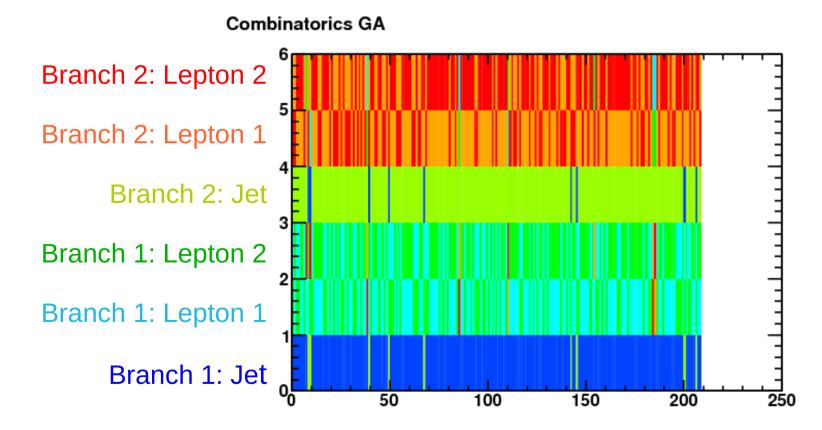

Pulls

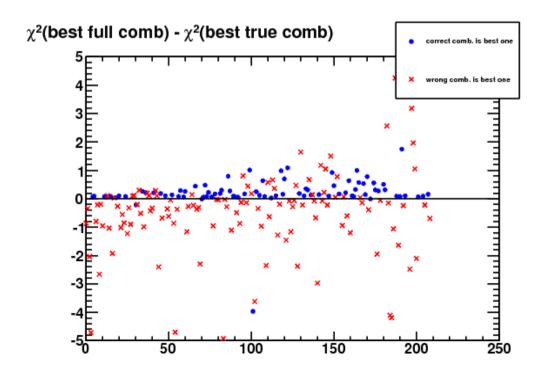

• Fixed calculation of pulls:


$$p_i = rac{E_i^{fit} - E_i^{meas}}{\sigma_{\Delta E_i}} = rac{\Delta E_i}{\sigma_{\Delta E_i}}$$
 $\sigma_{\Delta E_i} = \sqrt{\sigma_{E_i}^2 - \sigma_{E_i^{fit}}^2}$

Similar for GA & KF

- Width too large (should be 1)
- Quite long tails
- All uncertainty assumptions correct?
- Chi2 definition correct?




Fit incl. Combinatorics

- Very good assignment of particles to branches
 - Again similar performance of GA and KF
 - 88/209 events have correct assignment
 - ~7% events with a particle on the wrong branch

Comparison

- Compare Chi2 to fit w/o combinatorics
 - When correct combination was found the chi2 is very close to the chi2 w/o combinatorics (blue dots)
 - When a wrong combination was found the chi2 is in a few cases larger than the chi2 w/o comb. (red crosses above 0) → problem in finding the minimum?

