Direct optimization of discovery significance

Status report 07-08-2019

Contents

- 1. Reminder
- 2. Binary classification
- 3. Multiclass
- 4. Summary

Reminder

Approaches for optimization

Statistical significance Signal Background prediction prediction

Statistical significance

- s = N correctly classified signal events
- b = N background events classified as signal

Asimov significance:

$$Z_A = \left[2 \left((s+b) \ln \left[\frac{(s+b)(b+\sigma_b^2)}{b^2 + (s+b)\sigma_b^2} \right] - \frac{b^2}{\sigma_b^2} \ln \left[1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)} \right] \right) \right]^{1/2}$$

loss:
$$I_{Asimov} = 1 / Z_A^2$$

Simplified statistical significance:

loss:
$$I_s = (s + b) / s^2$$

Setup

Binary classification:

- Primary optimization with I_s .
- Afterwards use I_{Asimov} .

Multiclass:

- Primary optimization with crossentropy.
- Afterwards ...some combination of crossentropy and significance.

Binary classification

* Considered model: M_{gluino} = 1900 GeV amd M_{LSP} = 1000 GeV.

Original approach

$$loss = I_s \rightarrow I_{Asimov}$$
 ~5 σ

Original approach

* sigma (bg) = 10 %

 $loss = crossentropy -> I_{Asimov}$ ~10 σ

b = max(b, 2)

Multiclass

* Considered model: M_{gluino} = 1900 GeV amd M_{LSP} = 1000 GeV. * loss = I_{Asimov} + scale · crossentropy

Multiclass

* sigma (bg) = 10 %

l_{Asimov}(... | sample_weights) crossentropy(... | sample_weights)

~10σ

Multiclass

To be continued...