Direct optimization of discovery significance Status report 07-08-2019 #### Contents - 1. Reminder - 2. Binary classification - 3. Multiclass - 4. Summary # Reminder #### Approaches for optimization Statistical significance Signal Background prediction prediction #### Statistical significance - s = N correctly classified signal events - b = N background events classified as signal #### Asimov significance: $$Z_A = \left[2 \left((s+b) \ln \left[\frac{(s+b)(b+\sigma_b^2)}{b^2 + (s+b)\sigma_b^2} \right] - \frac{b^2}{\sigma_b^2} \ln \left[1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)} \right] \right) \right]^{1/2}$$ loss: $$I_{Asimov} = 1 / Z_A^2$$ Simplified statistical significance: loss: $$I_s = (s + b) / s^2$$ #### Setup #### Binary classification: - Primary optimization with I_s . - Afterwards use I_{Asimov} . #### Multiclass: - Primary optimization with crossentropy. - Afterwards ...some combination of crossentropy and significance. ### **Binary classification** * Considered model: M_{gluino} = 1900 GeV amd M_{LSP} = 1000 GeV. #### Original approach $$loss = I_s \rightarrow I_{Asimov}$$ ~5 σ #### Original approach * sigma (bg) = 10 % $loss = crossentropy -> I_{Asimov}$ ~10 σ #### b = max(b, 2) #### **Multiclass** * Considered model: M_{gluino} = 1900 GeV amd M_{LSP} = 1000 GeV. * loss = I_{Asimov} + scale · crossentropy #### **Multiclass** * sigma (bg) = 10 % l_{Asimov}(... | sample_weights) crossentropy(... | sample_weights) ~10σ #### **Multiclass** To be continued...