hericity

Aplanarity

イロン イヨン イヨン イヨン

э

1/21

Circularity

Centrality

Event Shape Variables in Semileptonic Top Decays

Antonia Mey

12.9.2007

Circularity

Centrality

Overview

Object of this talk :

- Looking at the semileptonic $t\bar{t}$ decay channel
- Generator study in respect to event shapes in order to be able to distinguish between signal and background data
 - Signal data: Alpgen, Pythia, Herwig and Mc@nlo with Pt cut at 15GeV, as low energy jets are unlikely in a top event
 - Background data: Alpgen generator for $\mathsf{W}+\mathsf{Jets}$ and QCD
 - Study of the following event shape variables: Fox Wolfram Moments, sphericity, circularity, aplanarity and centrality

Centrality

Semileptonic $t\bar{t}$ Decay

3/21

<ロ> <四> <四> <日> <日> <日</p>

Centrality

Analysis of the Decay Mode

- Top events of such kind will be observed at the LHC
- Semileptonic top decay produces 4 characteristic jets therefore an investigation into 4 and 5 jet events was conducted
- The shape of the event can then help with the detection of a semileptonic top event.

Event Shape Variables

Event shape variables are used to characterise the final state of the event. Numerous ways of describing such a final state have been invented:

Fox Wolfram Moments:

- Fox Wolfram Moments are originally used in final states of electron positron anihilations.
- They provide a complete set of rotationally invariant observables HI.

Aplanarity

Circularity

Centrality

Fox Wolfram Moments I

Event shape equation:

$$HI = \sum_{i,j} \frac{|p_i||p_j|}{E_{vis}^2} PI(\cos\theta_{ij})$$
(1)

where E_{vis} represents the visible energy of the event. Pl in the equation is given by the Legendre Polynomials. For P1 it is given by $P1 = cos(\theta_{ij})$, hence if the momentum is balanced within an event, the overall H1 of the Fox Wolfram Moment is zero.

Aplanarity

Circularity

Centrality

Fox Wolfram Moments II

Adjustions made for generator studies

- Pt of 4 and 5 Jets observed using Jet type IC05 with 15GeV Pt cut.
- Signal studies for Alpgen, Herwig, Mc@nlo and Pythia generators
- QCD and W + Jets background with Alpgen

Aplanarity

Circularity

Centrality

Fox Wolfram Moments III

Signal for different Monte Carlo generator data: H0 and H1

Aplanarit

Circularity

Centrality

Fox Wolfram Moments IV

Signal for different Monte Carlo generator data: H2 and H4

Aplanarit

Circularity

Centrality

Fox Wolfram Moments V

QCD and W+Jets Background with Alpgen signal: H0 and H1

・ロ ・ ・ (語 ・ く 語 ・ く 語 ・) 見 の Q (%)
10 / 21

Aplanarit

Circularity

Centrality

Fox Wolfram Moments VI

QCD and W+Jets Background with Alpgen signal: H2 and H4

・ロ ・ ・ (語 ・ く 語 ・ く 語 ・) 見 の Q (%)
11/21

Sphericity can be seen as a measure of the summed transverse momentum with respect to the event axis. The Sphericity tensor is defined as:

Sphericity tensor

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |p_{i}|^{2}}$$
(2)

where, $\alpha, \beta = 1, 2, 3$ representing the x,y and z components of the vectors.

Through the standard diagonalisation of the matrix, 3 eigenvalues can be found: $\lambda_1 \ge \lambda_2 \ge \lambda_3$ The eigenvalues are normalised and sphericity can be defined: Sphericity

$$S = 3/2(\lambda_2 + \lambda_3) \tag{3}$$

Aplanarit

Circularity

Centrality

Sphericity III

Signal and background plots for Sphericity

Aplanarity can be obtained through an eigenvalue of the tensor: Aplanarity

$$A = \frac{3}{2}\lambda_3 \tag{4}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

15/21

Aplanarity

Circularity

Centrality

Aplanarity II

Signal and background for aplanarity

As well as before circularity is given by a combination of eigenvalues

$$C = \frac{2\min(\lambda_1; \lambda_2)}{\lambda_1 + \lambda_2} \tag{5}$$

Aplanarity

Circularity

Centrality

Circularity II

Signal and background circularity

The last event shape variable investigated was centrality. Centrality can be defined in the following way:

Centrality

$$Cent = \frac{\sum Pt}{\sum E_{vis}} \tag{6}$$

Again only the Pt of the events with 4 and 5 jets have been looked at.

Aplanarity

Circularity

Centrality

Centrality II

Signal and background centrality

Aplanarit

Circularity

Centrality

Results and Summary

Observations

- The shape of an event is generator independent
- For the semileptonic decay channel only centrality appears to be a valuable event shape variable to distinguish between signal and background