CASTOR forward calorimeter: beam tests 2007

PH-CMG Meeting

CERN, 3 September 2007

Manjula de Silva^{1,*}, Masahiro Oroku^{2,*} David d'Enterria³

¹ Univ. Ruhuna (Sri Lanka), ² Tokyo Univ. (Japan)

³ CERN PH-CMG

* [CERN summer student]

Overview

- CMS forward detectors. CASTOR HAD/EM calorimeter.
- Physics with CASTOR
- Phase I: Quartz plates cutting/polishing/lapping
- Phase II: CASTOR (HAD section) elements
- Phase III: Reflecting foil around Q-plates edges
- Phase IV: Mounting of prototype
- Phase V: Transport of prototype
- Phase VI: Final installation at H2 Line
- Phase VII: Shifts taking during beam-tests
- Phase VIII: Some (online) results
- Summary

CMS forward detectors

CASTOR HAD/EM Calorimeter (I)

- CASTOR = Tungsten (W) + Quartz (Q) sampling calorimeter
- Dimensions: Total length: 1.36 m (10- λ_1): EM [11.2 cm ~ 20.12 X_0 , 0.792 λ_1]: 5mm W + 2mm Quartz HAD [1.35 m ~ 9.5 λ_i]: 10mm W + 4mm Quartz
- Segmentation: 16 azimuth, 14 longitudinal sectors (2 EM + 12 HAD)
- Num. of channels: 224 (32 EM, 192 HAD)

CASTOR HAD/EM Calorimeter (II)

- Why Quartz as active material ? Optimal material for forward region:
 - Radiation-hard (10-1000 MGy accumulated)
 - Fast response (< 10 ns), and compact dimensions
 - Cerenkov light emission (45°) from relativ. particles traversing Q- plates (collected by light-guides into PMTs)

Physics with CASTOR (I)

[Details in D.d'E: "Forward Physics at the LHC" arXiv:0708.0551]

- Beyond Standard Model (BSM) physics: "New physics" signals are characterized by a large amount of <u>missing transverse energy</u> (MET). CASTOR will extend the hermiticity of CMS from Δη~10 to Δη~13 allowing to measure more precisely the amount of MET.
- 2. Higgs physics: Higgs boson production in <u>Vector-Boson-Fusion</u> characterized by the emission of two jets at forward/backward rapidities (pp→jj H X). CASTOR will extend h range (beyond that of the currently considered HFs). [Eve Le Menedeu, last week presentation]
- 3. Low-x QCD: The measurement of forward jets (pp→j X), photons (pp→g X), or Drell-Yan pairs (pp→l+l- X) in CASTOR allows one to study the proton Parton Distribution Functions at very small parton momentum fractions (x~10⁻⁶)

Physics with CASTOR (II)

[Details in D.d'E: "Forward Physics at the LHC" arXiv:0708.0551]

- 4. Diffractive QCD: CASTOR is a precious tool for diffractive physics as it extends 3 extra units of pseudo-rapidity to tag/veto rapidity-gaps.
- 5. Cosmic-ray physics: E_{lab}(LHC)~100 PeV fixed-target collisions. The CASTOR measurement of the (p-p,p-Pb,Pb-Pb) forward energy & particle flows will provide valuable information to test/tune the models of "Extended Air Showers"). Also: study of anomalous EM-to-HADR energy-deposti profiles observed in cores of 10¹⁵-10¹⁷ eV cosmic-ray showers ("Centauro" events).
- Heavy-ion physics: Basic Level-1 trigger and centrality determination detector for heavy-ion collisions. Also: measurement of forward energy in Pb-Pb collisions.

Phase 1: Quartz plate cutting/polishing/lapping

- Quartz plates were extracted from DELPHI experiment and were cut/lapped/polish to match CASTOR specifications.
- We helped in various steps (cleaning, polishing) of this mechanical process.

POLISHING

LAPPING

PH-CMG, CERN, 03/09/2007

CUTTING

Phase 1 (end): CASTOR (HADR section) elements

• Quartz plates (4 mm)

• Tungsten plates (10 mm)

Phase 2: Reflecting foil around quartz edges

 Reflecting copper foil needs to be glued to the Q-plate edges to avoid light "cross-talk" between left-right plates.

Phase 3: Mounting of prototype (I)

Positioning of Tungsten & Quartz plates on support

Phase 3: Mounting of prototype (II)

• Positioning of light-guides, PMTs (cases, bases) on top of plates:

PH-CMG, CERN, 03/09/2007

Manjula de Silva, D.d'E

Phase 3 (end): CASTOR octant prototype (ISR lab)

Phase 4: Transport of prototype

• From "ISR lab" (mounting) to Prevessin site (beam-test)

Phase 5: Final installation at H2-line

Phase 5 (end): CASTOR octant installed at H2-line

Phase 6: Beam-tests

Phase 6: Taking shifts during beam-tests

• H2-line counting room:

01	0112527 SK (HVH)
02	0051363 SirSar & (414)
03	0017802 Si Ss & (244)
04	0017274 TRIG
05	0000000 TRIG - SCLVLE
06	0001702 TREAME LIAINA
87	000027 (4-VLE) AB +MB
08	0000000 n_VLE
09	0000000 CHARTE
10	0000000 Tecks
1 1	0000000 Teck2
12	000000 TRIG#TREA 385 #

Phase 7: Some (online) results (I)

• Energy deposited in plate-1 of EM section (e- beam, 30 GeV)

Phase 7: Some (online) results (II)

• TOTAL energy deposited in EM+HAD sections (pions, 350 GeV)

Phase 7: Some (online) results (II)

• Energy deposited in plate-3 of EM section (muon beam, 50 GeV)

Summary

- We have participated in the summer'07 CASTOR beam-tests: detector mounting/assembly and shifts. [The tests ended just yesterday at midnight !]
- Energy & position were scanned for each beam: e, π , μ (10 350 GeV).
- Several modifications (cutting of Quartz plate edges) of the calorimeter will be done to increase the light efficiency (HAD section).
- All the data will be analyzed to have a clear picture of energy linearity and resolution as well as position resolution for electromagnetic and hadronic particles and muons.

Backup slides