Cold filtering of photons for a TES detector in the ALPS II experiment

Christina Schwemmbauer

DESY Summer Student Talks, September 5th, 2019

ALPs

- Could solve strong CP problem in QCD
- Axion-Like-Particle (ALP)
- Weakly Interacting Slim Particles (WISPs)
- > Viable dark matter candidates
- Could explain multiple astrophysical phenomena
- Possible detection through Primakoff-like Sikivie Effect

ALPS II – Any Light Particle Search

Adapted from: A. Lindner, ALPS Summer Student Lecture 2019

- LSW (Light-Shining-through-a-Wall) Experiment (less dependent on theor. models)
- Using the Sikivie Effect
- ALPs generated through photon-ALPsoscillations
- ALPs can pass through light-tight walls

ALPS II – Any Light Particle Search

Adapted from: A. Lindner, ALPS Summer Student Lecture 2019

J. Dreyling-Eschweiler, A superconducting Microcalorimeter for Low-Flux Detection of Near-Infrared Single Photons

- LSW (Light-Shining-through-a-Wall) Experiment (less dependent on theor. models)
- > Using the Sikivie Effect
- ALPs generated through photon-ALPsoscillations
- ALPs can pass through light-tight walls
- > 24 HERA magnets
- Regeneration of photons in second cavity
- Photons sent to TES (Transition-Edge-Sensor)

TES and black body radiation

Adapted from J. Dreyling-Eschweiler, A superconducting Microcalorimeter for Low-Flux Detection of Near-Infrared Single Photons

- > TES detects reconverted photons
- Tungsten sensor operated at ~80mK
- Working point within superconducting transition region

TES and black body radiation

Detection of Near-Infrared Single Photons

- > TES detects reconverted photons
- Tungsten sensor operated at 80mK
- Working point within superconducting transition region
- Readout via SQUIDs
- Needed: extremely low background

TES and black body radiation

- > TES detects reconverted photons
- Tungsten sensor operated at 80mK
- Working point within superconducting transition region
- Readout via SQUIDs
- Needed: extremely low background
- Problem: background dominated by photons from black body radiation
- Assumption: Pile-up

Eschweiler, A superconducting Microcalorimeter for Low-Flux

Detection of Near-Infrared Single Photons

- > TES detects reconverted photons
- Tungsten sensor operated at 80mK
- Working point within superconducting transition region
- Readout via SQUIDs
- Needed: extremely low background
- Problem: background dominated by photons from black body radiation
- Assumption: Pile-up

Motivation:

Reduce background!

Filtering principle

- Filter bench with broadband bandpass filter
- Central wavelength: 1050nm
- Supposed to reduce lowenergy photon pileup

Filtering principle

K. Zenker, Construction of a filter bench for ALPS. Internal communication. (2017)

- Filter bench with broadband bandpass filter
- Central wavelength: 1050nm
- Supposed to reduce lowenergy photon pileup
- Calibration of fiber couplers very sensitive
- Originally: 2 titanium couplers
- Here: 1 titanium, 1 nickel-silver

Diode measurement setup

Setup for screening the laser behavior during cool-down and warm-up cycle

Laser spectrum

Laser spectrum with filter in cryostat

- Main peak remains
- Filter spectrum behaves as expected
- Transmission losses in accordance with diode measurements

wavelength [nm]

Expectation from expansion coefficient

- > Simulation of material shrinkage dependent on ΔT
- > Simulation: 19% transmission
- Measured: 21% transmission

Expectation from expansion coefficient

- > Simulation of material shrinkage dependent on ΔT
- > Simulation: 19% transmission
- Measured: 21% transmission

Comparison:

$$\alpha_{
m Nickel-Silver} = 18.4 \cdot 10^{-6} \, {
m K}^{-1}$$
 $\alpha_{
m Titanium} = 8.5 \cdot 10^{-6} \, {
m K}^{-1}$

Large transmission loss mainly due to material shrinkage

- > Filter works as expected
- Shrinking process during cooldown is reversible
- Further influences in transmission losses than just thermal shrinkage?

- > Filter works as expected
- Shrinking process during cooldown is reversible
- Further influences in transmission losses than just thermal shrinkage?

Thermal shrinkage needs to be reduced and characterized further

- Characterize influence of beam splitter/attenuator/mating sleeves
- Conduct background measurements with TES
- Measure background reduction through filter

