Inelastic Dark Matter at Neutrino Experiments

Gaspard Poulot

Ignazio Salvemini

Supervisors: Yohei Ema, Filippo Sala

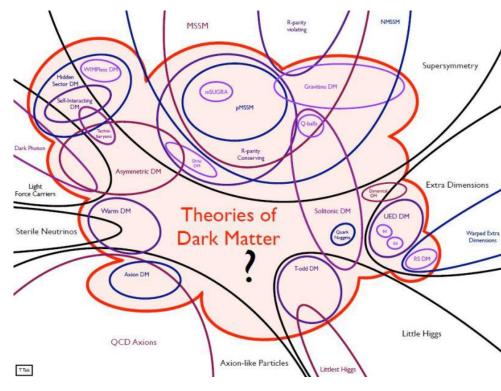
Outline

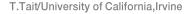
Introduction

Physical Motivations

Model

Results




Dark Matter is complicated

Multitude of candidates

Bottom-Up vs Top-Down approach

Need to study phenomenology of models to predict observation

Our starting point

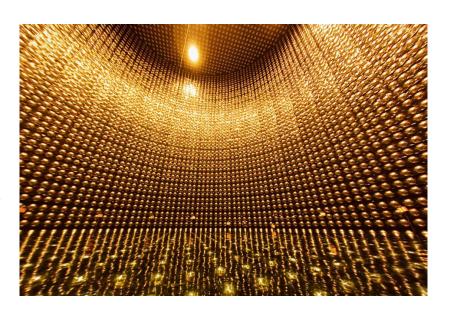
DESY 18-194 KEK-TH 2085

Light Dark Matter at Neutrino Experiments

Yohei Ema,^{1,2} Filippo Sala,¹ and Ryosuke Sato¹
¹DESY, Notkestraße 85, D-22607 Hamburg, Germany
²KEK Theory Center, Tsukuba 305-0801, Japan

Sub-GeV Dark Matter particles upscattered by cosmic rays gain enough kinetic energy to pass the thresholds of large volume detectors on Earth. We then use public Super-Kamiokande and MiniBooNE data to derive a novel limit on the scattering cross section of Dark Matter with electrons that extends down to sub-keV masses, closing a previously allowed wide region of parameter space. We finally discuss search strategies and prospects at existing and planned neutrino facilities.

PACS numbers: 95.35.+d (Dark matter), 95.55.Vj (Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors)


Our starting point (2)

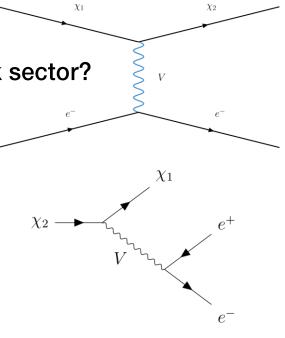
Light dark matter = Sub-GeV

Up-scattered by cosmic rays

Scatters with electrons in Super-K tank

Momentum high enough to be detected by Super-K

ABC News: Jake Sturmer

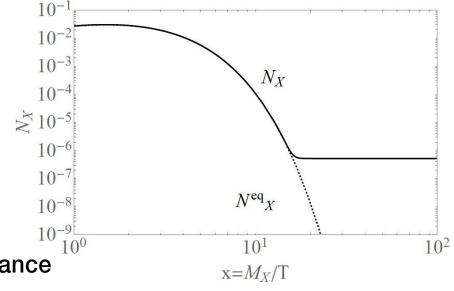

Our starting point (3)

> What happens if there are two particles in the dark sector?

> χ_2 is heavier than $\chi_1 => \chi_2$ can decay into χ_1

Detection motivations

Cosmology motivations

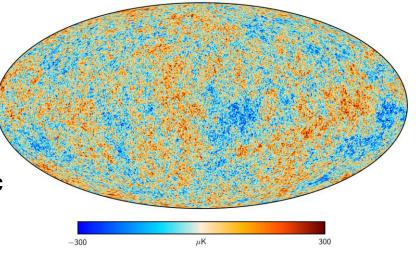

Freeze-out

> DM in thermal eq. with SM in early Universe

> Around $\Gamma \approx H$, rate of interaction (Γ) is slower than expansion rate (H)

Dark matter freezes out

Can then calculate current days abundance



Relic abundance

> Know from CMB measurements that $\Omega_{DM}h^2 \approx 0.11$

Model has five free parameters

Which combinations yield the correct relic abundance?

ESA and the Planck collaboration

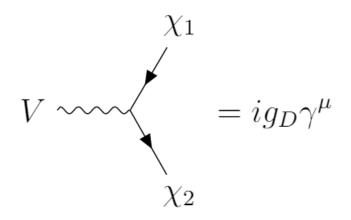
Boltzmann equation

> Calculate number of particles at freeze-out: $\frac{dN_X}{dx} = -\frac{\lambda}{x^2}[N_X^2 - (N_X^{eq})^2]$

> Where:
$$\lambda \equiv \frac{2\pi^2}{45} g_{*S} \frac{M_X^3 \langle \sigma v \rangle}{H(M_X)}$$
 , hence why we calculated the c-s!

Need to solve numerically

From there, straightforward to calculate relic abundance



Dark sector interactions

$$\mathcal{L}_{Dint} = -i\bar{\chi}_1 \gamma^5 \gamma^\mu V_\mu g_D \chi_2 - i\bar{\chi}_2 \gamma^5 \gamma^\mu V_\mu g_D \chi_1$$

Majorana Dark Matter

Couples only to dark photon

Kinetic Mixing: New vertices

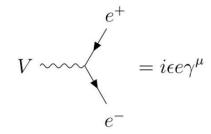
$$\mathcal{L} \supset -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{4}F^{\mu\nu}D_{\mu\nu} - \frac{\epsilon}{2}F^{\mu\nu}F_{D\mu\nu} - \frac{m_v^2}{2}V^{\mu}V_{\mu} - iqJ^{\mu}A_{\mu}$$

Kinetic Mixing: New vertices

$$\mathcal{L} \supset -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{4}F^{\mu\nu}D_{\mu\nu} - \frac{\epsilon}{2}F^{\mu\nu}F_{D\mu\nu} - \frac{m_v^2}{2}V^{\mu}V_{\mu} - iqJ^{\mu}A_{\mu}$$

$$\hat{A}^{\mu} \to A^{\mu} + \epsilon V^{\mu}$$

$$\mathcal{L} \supset -\frac{1}{4}\hat{F}^{\mu\nu}\hat{F}_{\mu\nu} - \frac{1}{4}F_{D}^{\mu\nu}F_{D\mu\nu} - \frac{m_{v}^{2}}{2}V^{\mu}V_{\mu} - iqJ^{\mu}\hat{A}_{\mu} - iq\epsilon J^{\mu}V_{\mu}$$

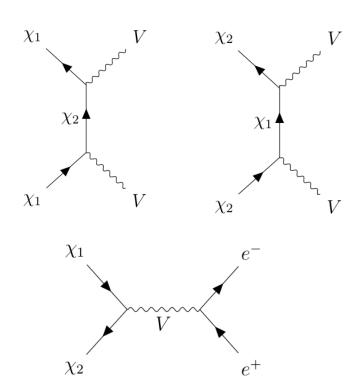


Kinetic Mixing: New vertices

$$\mathcal{L} \supset -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{4}F^{\mu\nu}D_{\mu\nu} - \frac{\epsilon}{2}F^{\mu\nu}F_{D\mu\nu} - \frac{m_v^2}{2}V^{\mu}V_{\mu} - iqJ^{\mu}A_{\mu}$$

$$\hat{A}^{\mu} \to A^{\mu} + \epsilon V^{\mu}$$

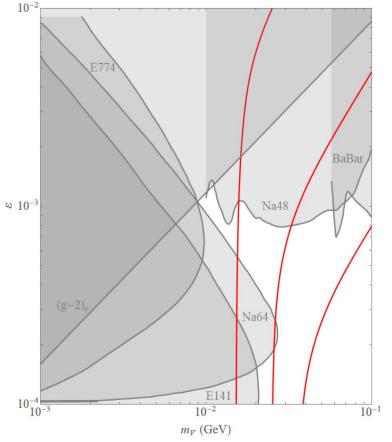
$$V \sim \bigvee_{e^{-}}^{e^{+}} = i\epsilon e \gamma^{\mu}$$


$$\mathcal{L} \supset -\frac{1}{4}\hat{F}^{\mu\nu}\hat{F}_{\mu\nu} - \frac{1}{4}F_{D}^{\mu\nu}F_{D\mu\nu} - \frac{m_{v}^{2}}{2}V^{\mu}V_{\mu} - iqJ^{\mu}\hat{A}_{\mu} - iq\epsilon J^{\mu}V_{\mu}$$

Co-annihilation

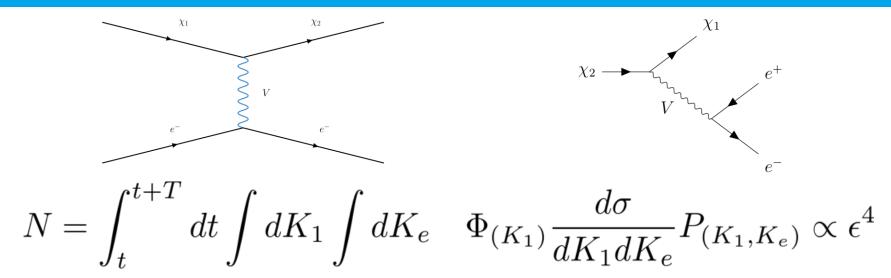
> Forbidden channel: m₁,₂<m_V

However, exponential tail of distribution still has access.



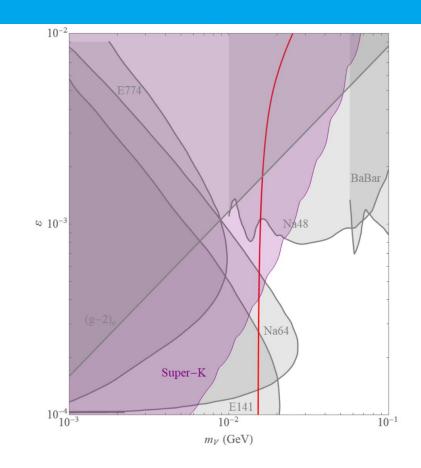
Final results

> Fix α_D and the mass ratios $\frac{m_2}{m_1}$, $\frac{m_v}{m_1}$


> Vary m_v , ε

Sensitivity

Expected number of observations, combined with the absence of detections puts a sensitivity bound on epsilon for a given set of dark sector mass parameters



Final results

$$> \alpha_D = 1$$

$$> \frac{m_2}{m_1} = 1.7$$

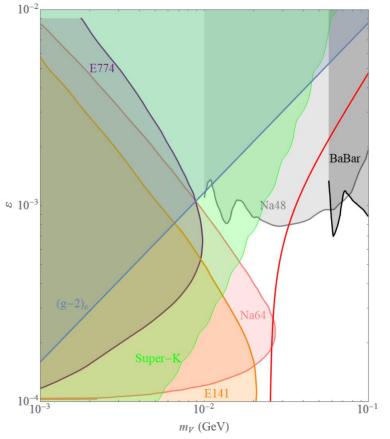
$$> \frac{m_v}{m_1} = 1.72$$

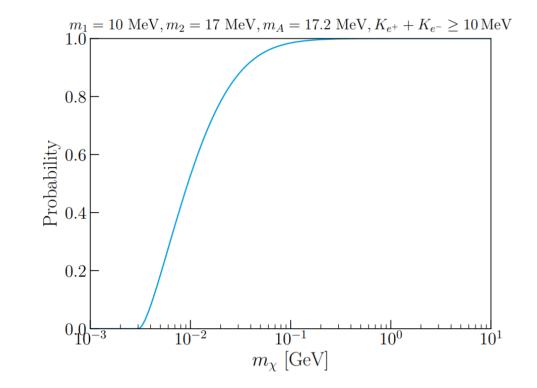
The End.

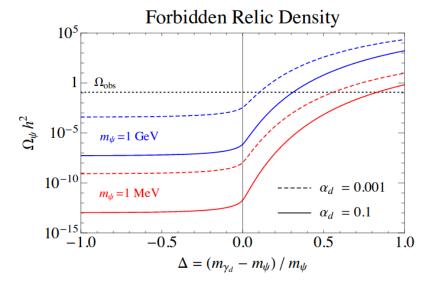
Thanks for listening!

> Questions?

(Too much sun for Gaspard)




BACK UP SLIDES



D'Agnolo, Ruderman (2015)

Detection

$$P = \int_0^{K_{max}} \frac{1}{\Gamma} \frac{d\Gamma}{dK_{\chi_1}}$$

K1max=K2-(m1m2)-Eth

