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-
Simulation for HEP (and why it needs to be fast)

v

Detector simulation required for:

> physics analysis — rare signals require large statistics
> detector design and optimisation etc.

v

Monte Carlo simulation time consuming and CPU intensive e.g WLCG

v

Start with calorimeters - most computationally intensive part

v

ILD has highly granular calorimeter
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|
Electromagnetic Calorimeter Showers

» Measure particle's energy destructively
» Produce a shower of secondary particles until absorbed totally

» ILD proposal uses an Si-W sampling calorimeter

Passnve absorber
Shower of secondary particles

o IHIHIHIHIHI

Detectors
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Neural Network Overview

hidden layer 1 hidden layer 2 hidden layer 3

input layer

» Deep — fit non-linear functions

» Loss function — performance

v

Learning — gradient descent
(minimise loss)

» Backpropagation — update parameters
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-
Generative Adversarial Networks (GANs) The concept

Real data

Police

Counterfeiter
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-
Generative Adversarial Networks (GANs) The concept

Real data

Discriminator

Generator

Backpropagation
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-
The CaloGAN Architecture M. Paganini et al.

Keras API with Tensorflow backend

» One generative model per particle type

v

» Loss function encourages conservation of energy

Attentional mechanism

v

v

Convolutional layers are replaced with locally connected layers
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-
The CaloGAN Architecture M. Paganini et al.

Keras API with Tensorflow backend

v

» One generative model per particle type

» Loss function encourages conservation of energy

» Attentional mechanism

» Convolutional layers are replaced with locally connected layers
stride
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-
The CaloGAN Architecture M. Paganini et al.

v

Keras APl with Tensorflow backend
» One generative model per particle type

» Loss function encourages conservation of energy

v

Attentional mechanism

v

Convolutional layers are replaced with locally connected layers

stride

B

#filters

'f.\\per patch
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|
Training data The Calorimeter Model

v

Created with GEANT4

Use Si active material and W passive material

v

v

Three layers — created by summing the energies in absorber and readout

» Uniform segmentation in each layer

S S S
104 @ [ ol (]
100 S 100 2 100 £
100 8 10? 3 2 )
@ @ 100 g
o 0g 2 01§ 2 4 &
3 100 3 10° 36 107
- 107" - 101 - 10-2
1072 8
5 1072
|~ -3
18_4 10-3 10 10
0 2 4 6 8 10
n Cell ID n Cell ID n Cell ID

DESY. | Fast shower simulation with Deep Learning | Peter McKeown | September 5th, 2019 |

Page 10/24



|
Training strategy
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Results Qualitative review
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Results Quantitative review
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|
Results Selecting a single energy
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.
Outlook

CaloGAN architecture is a good first step
Altering loss function

More layers

Already been further steps

» Different metric (e.g. Wasserstein)
» Condition on more than energy (momentum, position etc.)

In [356]: # 1,000 is the number of showers we want to generate right now - 25 GeV
noise_2 = np.random.normal(®, 1, (1000, latent_size))
sampled_energy 2 = np.random.uniform(25, 25, (1eee, 1))

In [357]: images_2 = generator.predict([noise 2, sampled_energy 2], verbose=True)

1000/1000 | ] 3ms/step

Run Summary
Number of events processed : 1000

User=3241.99s Real=3275.17s Sys=3.94s
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Backup
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|
Simulation for HEP (and why it needs to be fast)

» Detector simulation required for:

> physics analysis — rare signals require large statistics
> detector design and optimisation etc.

» MC simulation very time consuming and CPU intensive e.g WLCG

» Several possible speed up methods proposed:

» Reduce quantity of simulation
» Optimise simulation

» Cannot use MC for further speed up
> Start with calorimeters - most computationally intensive part
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.
Neural Network Overview

hidden layer 1 hidden layer 2 hidden layer 3

input layer

» Deep — fit non-linear functions

» Activation of given neuron:
al = o(wa® +b)

» Loss function — problem dependent

» Learning — gradient descent
(minimise loss)

» Backpropagation — update W and b
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-
Generative Adversarial Networks (GANSs) Further details

v

Generator (G) tries to match the training data distribution

v

Discriminator (D) is a binary classifier

v

Two player minmax game:

» D wants to maximise objective function
» G wants to minimise objective function

v

Unique solution — Nash equilibrium

> G recovers training data
» D=0.5
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|
Objective function for the original GAN

» Discriminator objective:
maxV (D) = Eonpyqr, [l0g D(@)] + Eznp, (o) [log(1 — D(G(2))))]

» Generator objective: ménV(G) =E.p.(»)[log(1 — D(G(2))))]
 Loss: min maxV(D, C) = By, 08 D(@)] + Eary. o) log(1 — D(G(:))]
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Challenges sparsity, mode collapse, HDR

» Sparsity — RelLU and leaky RelLU
activation functions

» High Dynamic Range — Batch
normalisation

» Mode Collapse — Mini-batch
Discrimination
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CaloGAN generator
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CaloGAN discriminator
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Results Selecting a single energy
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