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Simulation for HEP (and why it needs to be fast)

I Detector simulation required for:
I physics analysis → rare signals require large statistics
I detector design and optimisation etc.

I Monte Carlo simulation time consuming and CPU intensive e.g WLCG

I Start with calorimeters - most computationally intensive part

I ILD has highly granular calorimeter
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Electromagnetic Calorimeter Showers

I Measure particle’s energy destructively
I Produce a shower of secondary particles until absorbed totally
I ILD proposal uses an Si-W sampling calorimeter
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Neural Network Overview

I Deep → fit non-linear functions
I Loss function → performance
I Learning → gradient descent

(minimise loss)
I Backpropagation→ update parameters
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Generative Adversarial Networks (GANs) The concept

DESY. | Fast shower simulation with Deep Learning | Peter McKeown | September 5th, 2019 | Page 5/24



Generative Adversarial Networks (GANs) The concept

DESY. | Fast shower simulation with Deep Learning | Peter McKeown | September 5th, 2019 | Page 6/24



The CaloGAN Architecture M. Paganini et al.

I Keras API with Tensorflow backend
I One generative model per particle type
I Loss function encourages conservation of energy
I Attentional mechanism
I Convolutional layers are replaced with locally connected layers
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Training data The Calorimeter Model

I Created with GEANT4
I Use Si active material and W passive material
I Three layers → created by summing the energies in absorber and readout
I Uniform segmentation in each layer
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Training strategy
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Results Qualitative review
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Results Quantitative review
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Results Selecting a single energy

I
σ(E)
E ≈ 5%

I Expect σ(E)
E ∼ 1√

E
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Outlook

I CaloGAN architecture is a good first step
I Altering loss function
I More layers
I Already been further steps

I Different metric (e.g. Wasserstein)
I Condition on more than energy (momentum, position etc.)
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Backup
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Simulation for HEP (and why it needs to be fast)

I Detector simulation required for:
I physics analysis → rare signals require large statistics
I detector design and optimisation etc.

I MC simulation very time consuming and CPU intensive e.g WLCG

I Several possible speed up methods proposed:
I Reduce quantity of simulation
I Optimise simulation

I Cannot use MC for further speed up
I Start with calorimeters - most computationally intensive part
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Neural Network Overview

I Deep → fit non-linear functions
I Activation of given neuron:
~a(1) = σ(W~a(0) + ~b)

I Loss function → problem dependent
I Learning → gradient descent

(minimise loss)
I Backpropagation → update W and ~b
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Generative Adversarial Networks (GANs) Further details

I Generator (G) tries to match the training data distribution

I Discriminator (D) is a binary classifier

I Two player minmax game:
I D wants to maximise objective function
I G wants to minimise objective function

I Unique solution → Nash equilibrium
I G recovers training data
I D = 0.5
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Objective function for the original GAN

I Discriminator objective:
max

D
V (D) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z))))]

I Generator objective: min
G
V (G) = Ez∼pz(z)[log(1−D(G(z))))]

I Loss: min
G

max
D
V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z))))]

DESY. | Fast shower simulation with Deep Learning | Peter McKeown | September 5th, 2019 | Page 20/24



Challenges sparsity, mode collapse, HDR
I Sparsity → ReLU and leaky ReLU

activation functions

I High Dynamic Range → Batch
normalisation

I Mode Collapse → Mini-batch
Discrimination
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CaloGAN generator

DESY. | Fast shower simulation with Deep Learning | Peter McKeown | September 5th, 2019 | Page 22/24



CaloGAN discriminator
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Results Selecting a single energy
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