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Overview

● Electrons have very clear signature: it is relatively easy to 
measure them

● Now: likelihood-based method 
● Now: neglecting correlations between ID variables
● Future: modern tools - Neural Networks
● GOAL OF PROJECT: improve ratio of signal to background

 using neural networks 
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Electron Reconstruction1

● Electron reconstruction 
means creating 
track-cluster pairs
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Electron Identification
● 19 variables: shower-shapes, track 

quality, track-calo matching
● They have different distributions for 

signal and background
● We extract LH for every variable 

separately
● Particle LH is computed as product of 

single-variable LHs
● Neglecting correlation between 

single-variables’ LHs
● Some variables are used as fixed cuts 
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Data - Signal

● Signal sample used for 
training and testing NN 
comes from Z->e+e- decay
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Data - background

● Background sample 
contains two hadronic 
jets with filter over jet 
momentum
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Kinematic Plots
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Discriminating Plots
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Model Architecture2

● Implemented using Keras.
● Same input variables as LH 

method
● Different number of layers (2-8)
● Number of neurons getting 

smaller in deep layers
● Up to 21000 of trainable 

parameters
● ReLU activation function (sigmoid 

for output layer)
● Loss function is binary cross 

entropy
● In ideal case output (number 0-1) 

is proportional to LH of being 
electron
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Activation Function
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Sigmoid
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Loss Function and Learning Rate6
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Balancing Data - Undersampling

● Neural Networks perform the best 
with the same amount of signal 
and background in training sample

● One of the ways to reach the 
balance is to use undersampling
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NN performance (p
T
: 30-40 GeV)
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NN performance (p
T
: 30-40 GeV)
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NN performance (p
T
: 20-60 GeV)
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NN performance (p
T
: 20-60 GeV)
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Signal performance - p
T
 dependence
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● The plot shows number of events 
before and after the identification

● Using 0.85 score treshort 
(medium)

● p
T 

: 20-60 GeV
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Background performance - p
T
 dependence
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● p
T 

: 20-60 GeV
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Signal Efficiency and Background Rejection
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● p
T 

: 20-60 GeV
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Signal performance - nvtx dependence
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● p
T 

: 20-60 GeV● p
T 

: 30-40 GeV
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Small Data Sample - Question Mark
Half η (-0.7,0.)
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Full η (-0.7,0.7)
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Small Data Sample - Question Mark
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Summary and Future Stuff
● NN are powerful tools with huge potential in electron identification. They 

might give better results than current LH method, however their 
performance have to be evaluated carefully.

● Large amount of events needed in training sample
● p

T
 dependence of model performance

● They seem to be pile-up independent
● The idea is to use NN with the same architecture, but trained on different p

T
 

and η bins
● Test on real data (similar to previous LH method’s test) 
● Additional input variables (e.g. p

T
,raw informations about cells in cluster)
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Backup slides
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“p
T
 weights”

● Training sample should be 
balanced, also inside of every 
very fine p

T
 bin

● we apply additional weight 
called  “p

T
 weights”(except of 

event weights)
●
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Watch out for overtraining...2

● After too many epochs NN on the same data tend to get overtrained 
(especially small training samples are sensitive). 

● It means that NN starts to “remember” properties of training sample 
and losses its generality
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Study of Dropout

● Dropout is a way to avoid 
overtraining

● Fraction of neurons is randomly 
turned off during the training, 
reducing the dependency on the 
training set 

● I tried different amounts of 
dropout, but at the end only 
symbolic amount (5%) was needed 
or even 0%
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Loss Function - Binary Cross Entropy
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Learning rate
● Default learning rate was 0.001
● With Keras function 

ReduceLROnPlateau we can avoid 
overtraining 

● Luckily, in our case it was not needed
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