

Novelties in Detector R&D

Erika Garutti

- Overview of HEP R&D at DESY and Uni. HH
- R&D for sLHC → Si-tracker
- R&D for ILC → gaseous tracker (Time Projection Chamber)

(and beyond) \rightarrow hadron calorimeter

Universität Hamburg

HEP R&D @ DESY & Uni. HH

- Detector R&D is a very broad field covering many activities
- Extremely healthy and productive area of research
- Profit from common infrastructures / intensified knowledge exchange / coordinated use of resources
- Attractive for young scientists and for education of master and PhD students

Landesexzellenzinitiative Hamburg

A (incomplete) list of activities

Landesexzellenzinitiative Hamburg

R&D topic	Key words	Responsible
CMS tracking	Si-detectors	G. Eckerlin, G. Steinbruck
Radiation hardness (Si)	Theory + application	D. Eckstein, R. Klanner
ILC tracking	Time Projection Chamber, gas detectors	T. Behnke
Calorimetry	ILC and beyond, photodetection	E. Garutti, F. Sefkow
ATLAS ALFA	Roman pots	I. Gregor, T. Haas
CASTOR	Very forward calorimeter	K. Borras
Forward calorimetry	ILC, (CMS beam monitoring) diamond, rad. hard	W. Lohmann
Polarimetry	ILC polarimeter, photodetection	J. List
Neutrino physics	OPERA, BOREXINO, COBRA, drift detectors	C. Hagner, R. Zimmermann
ground-based gamma-ray astronomy	Cherenkov Telescope Array, photodetection	D. Horns, C. Spiering

The coming machines

LHC

Electrons Detectors Electron source Positrons

ILC

Technical Design Report due in 2012 accompanied by a detector design document →Current R&D effort targeted to "technological" prototypes scalable to ILC detector

Planned start of data taking: 2009
→ Detector R&D for sLHC upgrade started!

➔Intensified activity in combined ILC/CLIC technologies

XFEL, PETRA III, not covered in this talk (but possibility for synergy in detector R&D)

04/11/2009

LHC upgrade: sLHC

Landesexzellenzinitiative Hamburg

Detector challenge

Landesexzellenzinitiative Hamburg

CMS from LHC to sLHC

CMS silicon detector

The tracker is the key detector which will require upgrading for sLHC Phase 2

Improving radiation hardness

Landesexzellenzinitiative Hamburg

Radiation damage:

Bulk damage results in changes of the sensor properies such as

- field distribution
 ⇒ depletion voltage
- dark current → power, noise
- trapping → signal/noise, charge collection efficiency

Method: "Defect engineering"

- Understand radiation damage
- Correlate defects (microscopic property) with macroscopic parameters
- adjust doping → prevent "damaging" effects
- investigate oxygen-enriched silicon (DOFZ, Cz, MCz, EPI)

Effective doping

Landesexzellenzinitiative Hamburg

Technique: Thermally Stimulated Current (TSC) - for $\Phi_{eq} > 10^{12}$ cm⁻² current due to emission from filled traps

04/11/2009

Leakage current

Landesexzellenzinitiative Hamburg

Dark current correlates with deep electron clusters

Deep Level Transient Spectroscopy (DLTS) - for $\Phi_{\rm eq}$ < 10^{12} cm^{-2} capacitance transients during the emission from filled traps

close correlation to cluster related deep electron traps

New sensor materials: Diamond

Landesexzellenzinitiative Hamburg

Diamond sensors:

low leakage, radiation hard, low capacitance, but lower signal and difficult to mass produce

setup for sensor irradiation tests → in an high intensity electron beam

after absorbing 5 MGy CVD diamonds still operational

Development for ILC Forward calorimeter (FCAL) & CMS beam monitoring

challenges: - radiation hard sensors - fast readout

04/11/2009

New sensor materials: CdZnTe

Landesexzellenzinitiative Hamburg

→ The COBRA experiment

- detector based on CdZnTe semiconductor
- operated at room temperature
- high density of the crystal provides excellent stopping power
- detector array under design: ~6400 crystals of 1 cm³ size (~6.5g) for a total of 400 kg

Observation of ββ0v **implies Physics beyond the Standard Model**

- is the v its own antiparticle (Majorana)?
- what it the neutrino mass?

From LHC to ILC

Landesexzellenzinitiative Hamburg

Electron-positron colliders provide clean environment for precision physics

*At electron-positron the final state corresponds to the underlying physics interaction, e.g. above see $H \rightarrow b\overline{b}$ and $Z \rightarrow \mu^+\mu^-$ and nothing else...

High precision ILC physics demands a high precision detector:

→ high precision vertex (flavor tagging) and tracking (Higgs from di-lepton recoil mass)

→ precision calorimetry (heavy bosons reconstruction from di-jet decay)

04/11/2009

Particle Flow paradigm

Landesexzellenzinitiative Hamburg

- → reconstruct every particle in the event
- up to ~100 GeV Tracker is superior to calorimeter →
- use tracker to reconstruct $e^{\pm}, \mu^{\pm}, h^{\pm}$ (<65%> of E_{iet})
- use ECAL for γ reconstruction (<25%>)
- (ECAL+) HCAL for h⁰ reconstruction (<10%>)
- ➔ HCAL E resolution still dominates E_{iet} resolution
- ➔ But much improved resolution (only 10% of E_{iet} in HCAL)

PFLOW calorimetry = Highly granular detectors (CALICE) + Sophisticated reconstruction software

04/11/2009

ILC vertex: Pixel detector

Landesexzellenzinitiative Hamburg

EUDET telescope:

high resolution (σ<3μm) pixel beam telescope consisting of up to six planes of Monolithic Active Pixel Sensors Testbeam equipment for diamond sensor performance studies using the EUDET telescope

ILC tracking: TPC

Landesexzellenzinitiative Hamburg

Measure particle tracks using a gas filled sensitive volume parallel plate capacitor → true 3-D space point measurements Large volume: many space points (~200) with minimum of material (<4% X₀) → Energy loss measurement (~5% res.)

Technological break-through: Micro Pattern Gas Detector not limited by ExB effects

Gas Electron Multiplier GEM

TPC setup at the DESY test beam

Landesexzellenzinitiative Hamburg

Example of infrastructure for multiple-users (EUDET, HGF–Alliance)

PCMAG: superconducting magnet, up to 1.25 T e⁻ test beam @ DESY

Prove of technology with medium TPC:

end-plate hosting i - various readout technologies

The Field Cage

Landesexzellenzinitiative Hamburg

Diameter:

Length:

Inner 720 mm, Outer 770 mm Wall thickness: 25 mm 610 mm HV to be applied: up to 20 kV

Material budget below ILC specs. (barrel <4% X₀)

Radiation Length: 1.31% of X_0

04/11/2009

Test of various readout technologies

Landesexzellenzinitiative Hamburg

Double GEM structure

0.5 mm

A. Sugiyama, Saga Univ.

3-GEM structure & TimePix chip

user interface

J. Kaminski, Univ. of Bonn

3-GEM Structure & TimePix

Landesexzellenzinitiative Hamburg

Largest amount of readout channels on one anode for a TPC so far: # ch ~ 500 k

J. Kaminiski, Univ. of Bonn

The Silicon-PhotoMultiplier

Landesexzellenzinitiative Hamburg

A SiPM is a pixellated Avalange PhotoDiode operated in Geiger mode, i.e. above breakdown voltage.

Single pixels are connect in parallel via an individual limiting (quenching) resistor.

 $\Delta \mathbf{Q} = \Sigma \Delta \mathbf{Q}_{i} = \mathbf{N} \cdot (\mathbf{C}_{pixel} \cdot \Delta \mathbf{V})$ $\Rightarrow typically i \sim 100-1000 pixels / mm^{2}$

Some typical pixel parameter: -pixel size ~20-30 μ m -pixel capacitance C_{pixel} ~ 50fmF -quenching resistor R_{pixel} ~ 1-10 M\Omega

-small depletion region ~ 2μm -strong electric field (2-3)x10⁵ V/cm -very short Geiger discharge develop< 500ps

DESY/Uni.HH contributed from the early phase to of SiPM development

04/11/2009

Imaging calorimeter

Landesexzellenzinitiative Hamburg

HCAL prototype for ILC: key word "high granularity"

 ← calorimeter layer

hadronic shower → as seen by the HCAL (TB data)

PFLOW at work: an ILC event

The HCAL building block: scintillator tile with

scintillator tile with Silicon-Photomultiplier

readout

Validating PFLOW

Landesexzellenzinitiative Hamburg

CALICE collaboration: test beam campaigns at CERN & FNAL with highly granular calorimeters

04/11/2009

Positron Emission Tomography

Landesexzellenzinitiative Hamburg

How can a calorimeter save your life? → PET

500

a commercial PET system for hospital treatment

the same system without cover doesn't it look like something familiar?

basic unit of a PET: crystal (LSO, BGO) + PMT

SiPM offers: higher granularity, good time resolution compact system, low HV & cost

1000

ADC channels

Ground based Gamma Ray Astronomy

All-sky coverage from two sites (N,S) each with L, M, S size telescopes

Gamma Ray induces electromagnetic cascade → Relativistic particle shower in atmosphere

Cherenkov light
 fast light flash (~ns)
 100 γ / m² (1 TeV Gamma Ray)

Next generation: Cherenkov Array Telescope (CTA

- **CAMERA**
- Expensive
- Camera composed of 1000 2000 pixels
- Fast timing response (~1ns) to cope with EAS Cherenkov flashes
- Electronics inside the camera
- Keep low weight

Erika Garutti - LEXI Kickoff meeting

04/11/2009

Landesexzellenzinitiative Hamburg

R&D activities at DESY & Uni. HH

Landesexzellenzinitiative Hamburg

Profit from common infrastructures / intensified knowledge exchange / coordinated use of resources

laboratory)

- many exciting activities in detector R&D field
- increasing opportunities to intensify cooperation with the upcoming projects
 will impact on quality and visibility of our work
- important spin-off to other fields (medical application, photon science)

