Loops and Legs:

Methods and Results

O.L. Veretin

Loops and Legs ...

LEXI Particle Phenomenology Group at UHH/DESY Th

Pheno UHH

High Energy QCD

PEOPLE

S. Albino
M. Butenschön
M.Yu. Kalmykov
B.A. Kniehl
A.V. Kotikov
G. Moortgat-Pick
O.V. Tarasov
O.L. Veretin

J. BartelsJ. KotanskiL. LipatovL. MotykaA. Prygarin

A. Ali
M. Diehl
W. Khater
S. Mishima
J.-H. Park
T. Underwood
G. Weiglein

LEXI Particle Phenomenology Group at UHH/DESY Th

Pheno UHH

High Energy QCD

- \diamond fragmentation functions
- \diamond NRQCD:
- heavy quarkonia threshold production
- ♦ mixing renormalization
- \diamond unstable particles
- \diamond production of W/Z/H
- \diamond precision tests of SM
- \diamond collider phenomenology
- \diamond SUSY searches
- \diamond multiloop calculations

- \diamond higher twists in DIS
- \diamond BFKL equation
- AdS/CFT
 - correspondence
- $\Leftrightarrow \text{BDS Ansatz in } N = 4$ SUSY QCD

- ♦ collider phenomenology
- ♦ SUSYPERSYMMETRY
- ♦ electroweak symmetry breaking
- \diamond QCD in ep, e^+e^- and pp collisions
- \diamond exclusive processes in QCD
- \diamond factorization in QCD
- \diamond flavour physics
- \diamond extensions of the SM
- \diamond neutrino physics
- \diamond CP violation

introduction

- The past and current collider experiments show that the Standard Mode based on the gauge principle and the spontaneous symmetry breaking, the adequate theory up to few 100 GeV
- the only missing particle in the SM prediction is the Higgs boson
- though many problems remain that cannot be solved within the SI (hierarchy, unification, ...)

introduction

• the Large Hadron Collider (LHC) starts to operate soon

- goals:

 \ast searches for the Higgs boson

 \ast searches for the new physics

-features:

* new frontier in energy ($\sqrt{S} \sim 14$ TeV) and luminosity * radiation of quarks and gluons (jets) and chain decays \implies high-multiplicity events

- challenges for the theory
 - $\max \log (4, 5, 6, ...)$
 - many loops $(1,2,3,\dots)$
 - many scales

challenges and outlook for the theory

- LO suffers from large scale uncertainty \implies NLO corrections are important
 - QCD corrections are large (up to 100%!)
 - electroweak corrections are sizeable
- NLO calculations are required
 - Les Houches wishlist: $VVj, t\bar{t}jj, VVb\bar{b}, VVjj, Vjjj, VVV$
- QCD NNLO corrections for some processes
 - $-pp \longrightarrow W^*W^*/t\bar{t}/H/W/Z, pp \longrightarrow Z/\gamma + j$
 - -H decay etc.
- \bullet mixed EW/QCD NNLO
- resummations of large log's

problems

- number and complexity of diagrams grow very fast
- complicated structure of infrared and collinear singularities
 ⇒ needs special treatment
 - space slicing
 - $-\operatorname{dipole}/\operatorname{antenna}$ subtraction
- multidimensional numerical integrations
- numerical stability
- sufficient speed

how are we doing

Loops and Legs ...

advanced methods

- integration by parts (IBP)
- differential equations
- difference equations
- functional equations
- sector decompositions
- Mellin–Barns representations
- unitarity methods

• ...

"Unitarity cut" methods (1-loop)

Any n-point 1 -loop amplitude can be decomposed into sum of scalar integrals, e.g.

$$M_4 = P_{4,0}D + \sum P_{3,j}C_j + \sum P_{2,jl}B_{jl} + \sum P_{1,jln}A_{jln}$$

where $A = \bigcirc B = 2 \bigcirc C = \bigcirc D = \bigcirc$

and P's rational functions of kinematical invariants. The problem is to fin P's.

If one can evaluate all coefficients P's, the problem is solved! (A, B, C, D are known)

Loops and Legs ...

"Unitarity cut" methods (continue)

The basic idea:

- evaluate all possible discontinuities make "unitary cuts" (Cutkosky rule): $\frac{1}{k^2 - m^2} \rightarrow 2\pi \delta^+ (k^2 - m^2)$
- coefficients P's are not cut, but M_4 , A's, B's, C's and D are
- evaluate (numerically) remaining integrals (no loops anymore) integrals over *tree* amplidutes
- \bullet get the relations between P's
- \bullet having enough such relations solve them for P's. Done.

Advantages and disadvantages:

- +: one can work directly with amplitudes (no diagrams!)
- -: amplitudes are obtained by Monte Carlo integration

integration by parts (IBP)

$$\int u dv = uv - \int v du \longrightarrow \int d(uv) = uv|_{\text{boundaries}}$$

integration by parts (IBP)

$$\int u dv = uv - \int v du \quad \longrightarrow \quad \int d(uv) = uv|_{\text{boundaries}}$$

in dimension d:

$$\int d^d k \; \frac{\partial J^{\mu}(k,\ldots)}{\partial k_{\mu}} = \oint J^{\mu} \; d\Sigma_{\mu} \longrightarrow 0$$

Loops and Legs ...

integration by parts (IBP)

$$\int u dv = uv - \int v du \qquad \longrightarrow \qquad \int d(uv) = uv|_{\text{boundaries}}$$

in dimension d:

$$\int d^d k \; \frac{\partial J^{\mu}(k,\ldots)}{\partial k_{\mu}} = \oint J^{\mu} \; d\Sigma_{\mu} \longrightarrow 0$$

for L-loop integral, any
$$r, a_j, q, D_j$$
:

$$\int d^d k_1 \dots d^d k_L \quad \frac{\partial}{\partial k_\mu} \frac{q_\mu}{D_1^{a_1} D_2^{a_2} \dots D_r^{a_r}} = 0$$

 \implies algebraic relations among integrals with different sets of (a_1, a_2, \ldots, a_n) and numerators

all together L(L+E) relations

examples:

$$+\frac{4}{(d-3)(d-5)(d-6)s(s+u)(s+t+u)}$$

IBP consequences

- this works also for any number of loops, legs, scales ...
- these relations can be use to express some integrals in terms of others \implies reduction
- this is the powerfull tool

- express any Feynman integral in terms of master itegrals M_j

$$I = \sum_{j=1}^{n} R_j M_j,$$

with rational functions R_j (dimension, external invariants)

- IBP give us difference equation(s), that can be transforme further into differential equation(s)
- all corresponding equations are linear
- IBP should be taken in proper combinations

Differential equations

can be written in any invariant parameters (masses, kinematical invariant

Equation in $x = s/m^2$

$$x(1-x)J' + (1-x)J = \frac{x}{(1+x)^2} \left[4S + 2(1+4x+4x^2)S' \right]$$

Solution:

$$J(x) = \frac{C_1}{x} + \frac{1}{x} \int^x \frac{dx_1}{1 - x_1} \text{RHS}(x_1)$$

Loops and Legs ...

Differential equations

- all Feynman diagrams are subjects to linear differential equations
- IBP identities can be used to find DE's
- in addition to DE's one has to provide corresponding boundary conditions
- solutions
 - numerically
 - as (multiple) series of hypergeometric type

Hypergeometric functions

Hypergeometric functions

 $1 + x + x^{2} + x^{3} + \dots = \frac{1}{1 - x}$ $x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots = \sin x$ $\sum_{n=0}^{\infty} c_{n} x^{n}, \quad \text{where } \frac{c_{n+1}}{n} \text{ is rational in } n$

$$\sum_{k=1}^{\infty} c_{n_1, n_2, \dots, n_k} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k},$$

where x_j depend on invariants (masses, scalar products of momenta) and c depend on space-time dimension $d = 4 - 2\varepsilon$ For practical purposes we need:

- expansion in ε (limit $d \to 4$)
- analytical continuation
- asymptotics
- fast numerical evaluation

Functional equations

Feynman integrals $I_{k,r}$ (r refers to a number of lines and k numerate integrals with different topologies and powers of propagators) satisfies generalized recurrence relations:

$$\sum_{j} Q_j I_{j,n} = \sum_{k,r < n} R_{k,r} I_{k,r}$$

where Q_j, R_k are polynomials in masses, scalar products of externation momenta, dimension of space-time d, powers of propagators ν_l . General method for obtaining functional equations:

Remove integrals with n external legs (lines) by choosing scalar invariant masses, d and ν_j i.e. satisfy conditions:

$$Q_j = 0$$

and keep integrals with lesser number of external legs (lines), i.e. $R_k \neq 0$

4 November 2009	Hamburg Excellence Initiative
-----------------	-------------------------------

Loops and Legs ...

Functional equations for box integrals

Functional equations for box-integrals:

$$\begin{split} I_4^{(d)}(m_n^2, m_j^2, m_k^2, m_l^2; \ s_{nj}, s_{jk}, s_{kl}, s_{nl}; \ s_{jl}, s_{nk}) \\ &= \int \frac{d^d q}{i\pi^{d/2}} \frac{1}{[(q-p_n)^2 - m_n^2][(q-p_j)^2 - m_j^2][(q-p_k)^2 - m_k^2][(q-p_l)^2 - m_l^2]} \end{split}$$

Integrals for Bhabha scattering and heavy-quark production:

$$egin{aligned} m{B}(m{s},t) &= I_4^{(d)}(0,m^2,0,m^2;\ m^2,m^2,m^2,m^2;\ s,t),\ m{D}_2(m{s},t) &= I_4^{(d)}(0,0,0,m^2;\ 0,0,m^2,m^2;\ t,s). \end{aligned}$$

Functional equations for B(s,t) and $D_2(t,s)$

Integrals $D_2(s,t)$, B(s,t) satisfy the following functional equation:

$$D_{2}(s,t) = \frac{t+m^{2}}{2t} B\left(\frac{(t+m^{2})^{2}}{t},s\right) + \frac{t-m^{2}}{2t} I_{4}^{(d)}\left(0,0,0,0;\ 0,0,0,0;\ \frac{(t-m^{2})^{2}}{t},s\right).$$

- Functional equations allows one to reduce complicated integrals wit many variables to simpler integrals
- Functional equations can be used for analytic continuation of complicate integrals

Asymptotic expansions

- in the SM the spectrum of parameters is very rich
- it is offen possible to find large (small) in the process parameter
- use asymptotic expansion methods to reduce number of parameters = from *n*-scale problem to (n 1)-scale problem

$$-\operatorname{large mass} \longrightarrow \frac{1}{m_t}, \frac{1}{m_H}$$
$$-\operatorname{close masses} \frac{m_Z^2 - m_W^2}{m_Z^2} = \sin^2 \theta_W \sim 0.25, \frac{m_H^2 - m_t^2}{m_t^2}$$

-large (small) kinematical invariant, e.g. Sudakov limit $Q^2 \rightarrow \infty$ etc.

• the above procedure can be repeated (nested expansions)

Rules of asymptotic expansioins

Separation of "soft" and "hard" dynamics

$$W + W \gamma + W \gamma \gamma =$$

Calculations of master integrals (MI) without direct calculations

$$MI \sim \sum_{n=1}^{\infty} C_n x^n \left\{ F_0(n) + \left[\ln x F_{1,1}(n) + \frac{1}{\varepsilon} F_{1,2}(n) \right] + \left[\ln^2 x F_{2,1}(n) + \frac{1}{\varepsilon} \ln x F_{2,2}(n) + \frac{1}{\varepsilon^2} F_{2,3}(n) + \zeta(2) F_{2,4}(n) \right] + \dots,$$

where $x = q^2/m^2$ and
$$S_{a} = \sum_{n=1}^{\infty} C_n x^n \left\{ F_0(n) + \left[\ln x F_{1,1}(n) + \frac{1}{\varepsilon} F_{1,2}(n) \right] + \sum_{n=1}^{\infty} C_n x^n \left\{ F_0(n) + \frac{1}{\varepsilon} \ln x F_{2,2}(n) + \frac{1}{\varepsilon^2} F_{2,3}(n) + \zeta(2) F_{2,4}(n) \right\} \right\}$$

$$F_{N,k}(n) \sim \frac{Da,\dots}{n^b}, \quad (a+b=M-N),$$

Using the above ansatz and an information about the most singular part of MI (or some simpler diagram with "similar topology") it is possible usuall to reconstruct the complete MI result **without direct calculations**.

running α_s

$$\mu^2 \frac{\alpha_s(\mu)}{d\mu^2} = \beta(\alpha)\alpha(\mu), \qquad \beta = \alpha_s^2 \beta_0 + \alpha_s^3 \beta_1 + \alpha_s^4 \beta_2 + \alpha_s^5 \beta_3 + \dots$$

- $\beta_{0,1,2,3}(n_f)$ are known analytically in $\overline{\text{MS}}$ scheme
- for $m_Q \gg \mu$ heavy does not automatically decouple (Appelquist Carrazone)
- α_s is not an observable
- \bullet effective theory with n_f-1 massless and 1 massive quark
- matching $\alpha_s^{(n_f-1)}(m_Q) = \alpha_s^{(n_f)}(m_Q)$ holds to NLO
- matching coefficient $\xi(\mu) = \alpha_s^{(n_f-1)}(m_Q)/\alpha_s^{(n_f)}(m_Q)$
- recent 4-loop calcualation of ξ Schröder, Steinhauser, Chetyrkin, Kühn
- \bullet one bubble X could be computed numerically \longrightarrow

$$J(x)$$
 is a function of $x = \frac{m^2}{M^2}$

$$J(x) \sim (-8 + 88\varepsilon - 16\varepsilon\zeta_3 + \ldots) + x(-\frac{8}{27} + \frac{212}{27}\varepsilon - \frac{16}{3}\varepsilon\zeta_3 + \ldots) + x^2(-\frac{8}{125} + \frac{135479}{33750}\varepsilon - \frac{16}{5}\varepsilon\zeta_3 + \ldots) + O(x)$$

$$J(x)$$
 is a function of $x = \frac{m^2}{M^2}$

$$J(x) \sim (-8 + 88\varepsilon - 16\varepsilon\zeta_3 + \ldots) + x(-\frac{8}{27} + \frac{212}{27}\varepsilon - \frac{16}{3}\varepsilon\zeta_3 + \ldots) + x^2(-\frac{8}{125} + \frac{135479}{33750}\varepsilon - \frac{16}{5}\varepsilon\zeta_3 + \ldots) + O(x)$$

$$\longrightarrow \text{ fit } \longrightarrow$$

$$J(1) \sim \sum_{n=1}^{\infty} \left\{ +\frac{-8}{(2n-1)^3} + \varepsilon \left[\frac{16\zeta(3) - 2\sum_{j=1}^{2n-1} \frac{1}{j^3} + 16\sum_{j=1}^{n-1} \frac{1}{j^3}}{2n-1} + \ldots \right] + \varepsilon^2 \left[2\text{-fold sums} \right] + \ldots \right\}$$

$$J(x)$$
 is a function of $x = \frac{m^2}{M^2}$

$$J(x) \sim (-8 + 88\varepsilon - 16\varepsilon\zeta_3 + \ldots) + x(-\frac{8}{27} + \frac{212}{27}\varepsilon - \frac{16}{3}\varepsilon\zeta_3 + \ldots) + x^2(-\frac{8}{125} + \frac{135479}{33750}\varepsilon - \frac{16}{5}\varepsilon\zeta_3 + \ldots) + O(x)$$

$$\longrightarrow \text{ fit } \longrightarrow$$

$$J(1) \sim \sum_{n=1}^{\infty} \left\{ + \frac{-8}{(2n-1)^3} + \varepsilon \left[\frac{16\zeta(3)}{2\sum_{j=1}^{2n} \frac{1}{j^3}} + \frac{16\sum_{j=1}^{n-1} \frac{1}{j^3}}{2n-1} + \ldots \right] + \varepsilon^2 \left[2 \text{-fold sums} \right] + \ldots \right\}$$

harmonic sums

$$S_a(n) = \sum_{j=1}^n \frac{1}{j^a}$$

1 November 2009	Hamburg Excellence Initiati	ve
-----------------	-----------------------------	----

Loops and Legs ...

$$J(x)$$
 is a function of $x = \frac{m^2}{M^2}$

$$J(x) \sim (-8 + 88\varepsilon - 16\varepsilon\zeta_3 + \ldots) + x(-\frac{8}{27} + \frac{212}{27}\varepsilon - \frac{16}{3}\varepsilon\zeta_3 + \ldots) + x^2(-\frac{8}{125} + \frac{135479}{33750}\varepsilon - \frac{16}{5}\varepsilon\zeta_3 + \ldots) + O(x)$$

$$\longrightarrow \text{ fit } \longrightarrow$$

$$J(1) \sim \sum_{n=1}^{\infty} \left\{ +\frac{\zeta(3)}{(2n-1)^3} + \varepsilon \left[-\frac{\zeta(3)}{2n-1} - \frac{S_3(n-1)}{2n-1} + \ldots \right] + \varepsilon^2 \left[2\text{-fold sums} \right] + \ldots \right\}$$

harmonic sums

$$S_a(n) = \sum_{j=1}^n \frac{1}{j^a}$$

4 November 2009	Hamburg Excellence Initiative
-----------------	-------------------------------

Loops and Legs ...

$$J(x)$$
 is a function of $x = \frac{m^2}{M^2}$

$$J(x) \sim (-8 + 88\varepsilon - 16\varepsilon\zeta_3 + \ldots) + x(-\frac{8}{27} + \frac{212}{27}\varepsilon - \frac{16}{3}\varepsilon\zeta_3 + \ldots) + x^2(-\frac{8}{125} + \frac{135479}{33750}\varepsilon - \frac{16}{5}\varepsilon\zeta_3 + \ldots) + O(x)$$

$$\longrightarrow \text{ fit } \longrightarrow$$

$$J(1) \sim \sum_{n=1}^{\infty} \left\{ +\frac{-8}{(2n-1)^3} + \varepsilon \left[\frac{16\zeta(3) - 2S_3(2n-1) + 16S_3(n-1)}{2n-1} + \ldots \right] + \varepsilon^2 \left[2\text{-fold sums} \right] + \ldots \right\}$$

harmonic sums

$$S_a(n) = \sum_{j=1}^n \frac{1}{j^a}$$

4 November 2009	Hamburg Excellence Initiative
-----------------	-------------------------------

Loops and Legs ...

result for X

$$X = -318\zeta(4)\ln 2 + \frac{837}{2}\zeta(5) - 16\left(2\zeta(2) - \frac{1}{5}\ln^2 2\right)\ln^3 2 + 384\text{Li}_5\left(\frac{1}{2}\right)$$

$$\frac{\alpha_s^{(n-1)}}{\alpha_s^{(n)}} = 1 + \alpha_s^{(n)} A_1 + (\alpha_s^{(n)})^2 A_2 + (\alpha_s^{(n)})^3 A_3 + (\alpha_s^{(n)})^4 A_4$$

Loops and Legs ...

W- and Z-boson production

- one of the main processes at LHC
- luminosity measurement
- detector calibration
- seach for new physics $\longrightarrow Z'$

For the high p_T : QCD NNLO and mixed EW/QCD corrections are known (exer QED/QCD in Z-production)

Missing contributions for mixed EW/QCD evaluation

- 2-loop virtual contribution
- collinear limits of 1-loop amplitudes

W- and Z-boson production

- expansion in parameter q^2/m^2
- summation of the series using ansatz

Results for the form factors of V-boson

$$\begin{split} F_{R} &= i\frac{e}{s}(1 + C_{F}\frac{\alpha_{s}}{4\pi}f^{(0,1)})[g_{R} + \frac{\alpha}{4\pi s^{2}}g_{R}^{3}\rho_{A} + C_{F}\frac{\alpha_{s}}{4\pi}\frac{\alpha}{4\pi s^{2}}g_{R}^{3}\phi_{A}],\\ F_{L} &= i\frac{e}{s}(1 + C_{F}\frac{\alpha_{s}}{4\pi}f^{(0,1)})[g_{L} + \frac{\alpha}{4\pi s^{2}}(g_{L}^{3}\rho_{A} + \frac{g_{L}}{2}\rho_{A} + c\frac{I_{3}}{2}\rho_{NA}) \\ &+ C_{F}\frac{\alpha_{s}}{4\pi}\frac{\alpha}{4\pi s^{2}}(g_{L}^{3}\phi_{A} + \frac{g_{L}}{2}\phi_{A} + c\frac{I_{3}}{2}\phi_{NA})], \end{split}$$

$$\phi_{A} = 14 + 72\zeta_{2}l_{2} - 64\zeta_{2}l_{2}^{2} - \frac{16}{3}l_{2}^{4} + 22\zeta_{2} - 28\zeta_{3} + 16\zeta_{4} - 128\text{Li}_{4}(\frac{1}{2}) + i\pi(85 + 32l_{2} + 24l_{2}^{2} - \frac{32}{3}l_{2}^{3} + 14\zeta_{2} - 120\zeta_{3})$$

 $l_2 = \ln 2$

$\bar{t}t$ production (inclusive)

	LHC $(S = 14 \text{TeV})$	Tevatron ($S = 1.96$ TeV)	
NLO QCD	$\sim 50\%$	$\sim 25\%$	Nason, Bennaker et al.
EW	$\sim 0.5\%$	$\sim 1\%$	Benakker et al.
MSSM	$\sim 5\%$	$\sim 5\%$	Berge et al.
NNLO QCD	?	?	
est. th. err.	$\sim 14\%$	$\sim 12\%$	Moch, Uwer
est. exp. err.	$\sim 5 - 10\%$	$\sim 10\%$	

 \implies NNLO corrections are necessary

- some partial NNLO results are available in the literature
- recent analytical NLO result Czakon, Mitov
- also for ILC Kniehl, Kotikov, Merebashvili, OV

$t\bar{t}$ production

- velocity of heavy quark as kinematical variable $\beta = \sqrt{1 4m^2/s}$
- expansion in β or
- differential equation up to degree 7
- result in terms of $H_{a,b,c}(\beta) + 3$ new functions

Test of NRQCD at NLO

Nonrelativistic QCD (NRQCD) is the rigouros effective field theory, base on factorization of soft and hard scales (scale hierarchy: $Mv^2, Mv \ll \Lambda_{\scriptscriptstyle QCD} \ll M$).

- description of heavy quarkonia
- production of heavy quarks near threshold

Heavy quarkonia (charmonia $c\bar{c}$ and bottomonia $b\bar{b}$) are bound states of heavy quark and antiquark. Can be produced in different states

- color singlet (S-wave)
- color octet (P-wave)

J/ψ Production with NRQCD

Factorization theorem: $\sigma_{J/\psi} = \sum_{n} \sigma_{c\bar{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- n: Every possible Fock state, including color-octet states.
- $\sigma_{c\bar{c}[n]}$: Production rate of $c\bar{c}[n]$, calculated in perturbative QCD.
- $\langle O^{J/psi}[n] \rangle$: Long distance matrix elements (ME): describe $c\bar{c}[n] \rightarrow J/psi$, universal, extracted from experiment.

Scaling rules: MEs scale with relative velocity $v (v^2 \approx 0.2)$:

$$\frac{\text{scaling}}{n} \frac{v^3}{^3S_1^{[1]}} \frac{v^7}{^1S_0^{[8]}}, \frac{v^7}{^3S_1^{[8]}}, \frac{v^{11}}{^3P_{0/1/2}^{[8]}} \dots$$

• Double expansion in v and α_s .

• Leading term in v $(n = {}^{3}S_{1}^{[1]})$ equals color-singlet model.

Numerical Evaluation and Final Results

Butenschön, Knie

- Color-octet MEs from leading order Tevatron fit
- NLO Tevatron fit \implies Decrease of CO MEs: Yellow bands

Outlook

- the activity of the phenomenology group includes both
 - $-\operatorname{QCD}$ and electroweak physics
 - $-\operatorname{SM}$ and beyond SM
 - phenomenological and mathematical aspects
- NLO and NNLO calculations is a real challenge for a theory and requir special advanced methods of calculation
- Feynman diagrams can be considered generally as multip hypergeometric functions, which requires
 - methods of reduction, i.e. express general functions in terms of onl few (basis) ones
 - method of expansion in ε

Outlook

- general task: find the full set of (special) functions so that **all orde** ϵ -expansion is expressible in terms of them
- algorithms for the fast and stable numerical evaluation of these function should be constructed
- automatization: general purpose programs exist only for LO order approximation and the creation of such programs for NLO is challenging task