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IntroductionIntroduction
Neutrino physics is entering a “precision era”

Solar sector

Atmospheric sector

 m21
2 =7.67

−0.61
0.67×10−5 eV 2

12=34.5−4.0
4.8

m31
2 =2.46−0.42

0.47×10−3eV 2

23=42.3−7.7
11.3

from 
Gonzalez-Garcia&Maltoni,
Phys.Rept.460:1-129,2008 

What we still do not know
13 − CP

23=45
o ?

mass hierarchy

Recent data
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IntroductionIntroduction
The data seem to be described by:

sin13=0
tan223=1
tan 212=1 /2

Very good first order approximation, 

called   Tri-Bimaximal mixing (TBM)

The crucial question is: 

  Is TBM real ?

YES NO

One can invoke discrete 
symmetry groups which naturally 
give TBM at lowest order:
D4,  A4, S3, S4 ....

Agreement with data is 
accidental: many models  fit the 
data and TBM does not play any 
fundamental role
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IntroductionIntroduction
We follow here the approach YES

General characteristics 
and predictions

See talks by Majee and Seidl 
for models of type NO  

The leading order (LO) results is TBM  

 Having specified the field content, the  
corrections (NLO) to TBM mixing arise from 
higher dimensional effective operators 

All mixing angles receive 
corrections of the same 
order of magnitude, unless 
very special dynamical tricks are 
used

The scale of the corrections is fixed from the solar 
angles (most contrained angle)
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IntroductionIntroduction

sin2(2θ
12

)exp –sin2(2θ
12

)TBM   ~ O(λ
C

2) ~  0.04

note that λ
C

2  is a convenient hierarchy 
parameter not only for quarks but also in 
the charged lepton sector

                                      Relevant prediction:  θ
13

 ~ O(λ
C

2)   
                       within the sensitivity of the experiments which are now in preparation

(m
μ
/m

τ
)  ∼ 0.06  ∼ λ

C
2

(m
e
/ m

τ
)  ∼ 0.005  ∼ λ

C
3-4

 

Important: exp data do not exclude θ
13

 ~ O(λ
C
)  

If so, once could argue that TBM is just an accidental coincidence
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The neutrino mixing matrixThe neutrino mixing matrix

The mixing matrix connects these two bases, 

like the CKM for quarks

We know from oscillation experiments that neutrinos are 
massive and are at least 3:
mass and flavor bases are different

 =U  ii
Flavour eigenstates Mass eigenstates

What is its origin?

After EW symmetry breaking you get mass matrices   

 
l  



leptonic mass matrix: no real and 
no symmetric

neutrino mass matrix: no real but 
symmetric
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The neutrino mixing matrixThe neutrino mixing matrix
To obtain the mass eigenvalues one needs to diagonalize both mass matrices 

 

(λl)+ λl is diagonalized by an unitary  U
l

 λν   is diagonalized by an unitary  U
ν

 Interaction lagrangian in the lepton sector 

l LL⇒U
l Ul LL

U PMNS=U
l U 

 neutrino mixing matrix
PMNS=Pontecorvo–Maki–Nakagawa–Sakata
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The neutrino mixing matrixThe neutrino mixing matrix

Relevant feature: both charged and neutral leptons contribute 
to the neutrino mixing matrix !!!

 

U TBM= 23 1
3

0

−1
6

1
3

− 1
2

−1
6

1
3

1
2


U PMNS=U TBMOC

2 corrections

U PMNS=U
l U 

PMNS=Pontecorvo–Maki–Nakagawa–Sakata

Experimental data are very well described with the following ansatz:

U PMNS=R2323R1313 ,R1212
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The model buildingThe model building
Large interest in recent years to find models which reproduce, at least 
al LO, the TBM behaviour of the data (no GUT models in the list...)

E. M a and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arX iv:hep-ph/0106291];
E. M a, M od. Phys. Lett. A 17 (2002) 627 [arX iv:hep-ph/0203238]; K . S. Babu,
E. M a and J. W. F. Valle, Phys. Lett. B 552 (2003) 207 [arX iv:hep-ph/0206292];
M . Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del M oral,
arX iv:hep-ph/0312244; Phys. Rev. D 69 (2004) 093006 [arX iv:hep-ph/0312265];
E. M a, Phys. Rev. D 70 (2004) 031901; Phys. Rev. D 70 (2004) 031901 [arX iv:hepph/
0404199]; New J. Phys. 6 (2004) 104 [arX iv:hep-ph/0405152]; arX iv:hepph/
0409075; S. L. Chen, M . Frigerio and E. M a, Nucl. Phys. B 724 (2005)
423 [arX iv:hep-ph/0504181]; E. M a, Phys. Rev. D 72 (2005) 037301 [arX iv:hepph/
0505209]; M . Hirsch, A. Villanova del M oral, J. W. F. Valle and E. M a,
Phys. Rev. D 72 (2005) 091301 [Erratum-ibid. D 72 (2005) 119904] [arX iv:hepph/
0507148]; K . S. Babu and X . G. He, arX iv:hep-ph/0507217; E. M a, M od. Phys.
Lett. A 20 (2005) 2601 arX iv:hep-ph/0508099]; A. Zee, Phys. Lett. B 630 (2005)
58 [arX iv:hep-ph/0508278]; E. M a, Phys. Rev. D 73 (2006) 057304 [arX iv:hepph/
0511133]; X . G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604 (2006) 039
[arX iv:hep-ph/0601001]; B. Adhikary, B. Brahmachari, A. Ghosal, E. M a and
M . K . Parida, Phys. Lett. B 638 (2006) 345 [arX iv:hep-ph/0603059]; E. M a, M od.
Phys. Lett. A 21 (2006) 2931 [arX iv:hep-ph/0607190]; M od. Phys. Lett. A 22 (2007)
101 [arX iv:hep-ph/0610342]; L. Lavoura and H. Kuhbock, M od. Phys. Lett. A 22E.
 M a and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arX iv:hep-ph/0106291];
E. M a, M od. Phys. Lett. A 17 (2002) 627 [arX iv:hep-ph/0203238]; K . S. Babu,
E. M a and J. W. F. Valle, Phys. Lett. B 552 (2003) 207 [arX iv:hep-ph/0206292];
M . Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del M oral,
arX iv:hep-ph/0312244; Phys. Rev. D 69 (2004) 093006 [arX iv:hep-ph/0312265];
E. M a, Phys. Rev. D 70 (2004) 031901; Phys. Rev. D 70 (2004) 031901 [arX iv:hepph/
0404199]; New J. Phys. 6 (2004) 104 [arX iv:hep-ph/0405152]; arX iv:hepph/
0409075; S. L. Chen, M . Frigerio and E. M a, Nucl. Phys. B 724 (2005)
423 [arX iv:hep-ph/0504181]; E. M a, Phys. Rev. D 72 (2005) 037301 [arX iv:hepph/
0505209]; M . Hirsch, A. Villanova del M oral, J. W. F. Valle and E. M a,
Phys. Rev. D 72 (2005) 091301 [Erratum-ibid. D 72 (2005) 119904] [arX iv:hepph/
0507148]; K . S. Babu and X . G. He, arX iv:hep-ph/0507217; E. M a, M od. Phys.
Lett. A 20 (2005) 2601 arX iv:hep-ph/0508099]; A. Zee, Phys. Lett. B 630 (2005)
58 [arX iv:hep-ph/0508278]; E. M a, Phys. Rev. D 73 (2006) 057304 [arX iv:hepph/
0511133]; X . G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604 (2006) 039
[arX iv:hep-ph/0601001]; B. Adhikary, B. Brahmachari, A. Ghosal, E. M a and
M . K . Parida, Phys. Lett. B 638 (2006) 345 [arX iv:hep-ph/0603059]

And many others...
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TBM and discrete symmetriesTBM and discrete symmetries

The question is: why discrete non-abelian groups work so well

Let us first consider the case in which the 
data are exactly explained in terms of TBM

U l =I ⇒ U PMNS=U=U TBM
In the basis where 
charged leptons are 
diagonal

Since U
ν
 diagonalizes the neutrino mass 

matrix we can infer the most general 
structure of λν

= x y y
y xv y−v
y y−v xv

This is a symmetric, 2-3 symmetric matrix with a11 + a12 = a22 + a23
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TBM and discrete symmetriesTBM and discrete symmetries

Then if you want to get a TBM neutrino mixing you must be 
able to produce this kind of mass matrix

Let us take to group S4 to illustrate how these models generally work

1 - S4 is the group of permutations of 4 objects   24 objects→

2 – as usual, to generate all the group elements we need to identify 
                           “ generators of the group” and their action

One possible “representation”:   S2=T3=1   and S T2S=T 

these are called   S and T

3 – they act as follows:           (1234)  (2341)   under S→
                            (1234)  (2314)   under T→
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TBM and discrete symmetriesTBM and discrete symmetries

Now we are done!

The 24 elements are obtained considering all possible permutations of 1234. 
They belong to 5 conjugate classes...

4 – the # of irreducible representations = # of  conjugate classes

                              S4 has 5 irreducible representations

- two singlets 1
1
 and 1

2     
   useful for SM singlets →

- one doublet   2               useful for quarks→
- two triplets 3

1
 and 3

2    
   useful for leptons→

5 – a model is built when one specifies the field content and assign them    
     to representation of the group

6 – all the interactions must respect the SM as well as the S4 symmetries
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TBM and discrete symmetriesTBM and discrete symmetries

A representation of the group

1
1
 :    S=1   T=1

1
2
 :    S=-1   T=1                 2 : 

    

S=0 11 0 T = 0
0 2

3
1
 :    S=1

3 −1 2 22

2 22 −1
22 −1 2 T = 1 0 00 2 0

0 0  

“T-diagonal representation”

where ω = e2πi/3

3
2
 : S  -S       T  T     → →

Table of multiplication
11⊗any=any

12⊗12=11 12⊗2=2 12⊗3 j=3 j

2⊗2=11122 2⊗3i=3132
3i⊗3i=1123132 31⊗32=1223132
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TBM and discrete symmetriesTBM and discrete symmetries

The TBM is derived considering that: 

S4 is a symmetry of the Nature at a very high energy scale Λ

the symmetry is spontaneously broken by a set of scalar multiplets 
 Φ (FLAVONS) with VEV aligned in some particular directions

The preserved subgroups have to be different in the charged and 
neutrino sectors otherwise

U l=U  ⇒ U PMNS= I

Different symmetry breaking patterns allowed !!!
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Symmetry breakingSymmetry breaking

In the neutrino sector:

Choose the vevs of flavon fields as S≈111
This choice breaks T but preserves S:  T S≠S S S=S

This also preserves  the element T S T S 2=1 0 00 0 1
0 1 0

The preserved group after symmetry breaking is Z
2
XZ

2

S  S= T S T S2T S T S 2=

The most general neutrino mass matrix diagonalized by TBM 
is left invariant by the generators of this subgroup of S4 !!!
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Symmetry breakingSymmetry breaking

In the charged lepton sector:

Choose the vevs of flavon fields as T≈010
T T≠T S T≠T

Having obtained TBM in the neutrino sector, U
l
 must be the identity

(λl)+  λl  must be a diagonal matrix and, at the same time, we need to mantain 
the hierarchy between the masses of charged leptons  

This is achieved observing that:
hierarchy:  fT, fT

2/L and fT
3/L2 preserve different subgroups (not of S4)  with 

invariant mass matrices with only 1 column different from zero
diagonal form: ZN  eliminates unwanted couplings

The group S4 is completely broken
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A model realization: S4 x Z5A model realization: S4 x Z5

Standard Model fields + right-handed neutrinos

l=
e

e 


 


 ~31 ec~12 c~11 c~11S4 :

Z5 : 1 3 2 

c=e
c


c


c~31

2

Higgs fields

hu~11,
2 hd~11,1
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A model realization: S4 x Z5A model realization: S4 x Z5

Symmetry breaking sector

T ~31,
4

Charged leptons:

~2,4

Neutrino sector:

S~31, ~2, ~11,

remember

〈T 〉=vT010 〈S〉=vS 111
   and also

〈〉=v01 〈〉=v11 〈〉=u
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A model realization: S4 x Z5A model realization: S4 x Z5

Most general lagrangians invariant under SM x S4 x Z5

Charged leptons:

L=
y


c l T  hd

y1

2 c l T T hd 
y2

2 c l T  hd

ye1

3 ec [ l T T T 2 ]hd
ye2

3 ec [l T T T 31 ]hd

ye3

3 ec [l T T 31 ]hd
ye4

3 ec [l T 2 ]hd

Most general lagrangians invariant under SM x S4 x Z5

µ entries

τ entry

electron
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A model realization: S4 x Z5A model realization: S4 x Z5

Most general lagrangians invariant under SM x S4 x Z5

Charged leptons mass matrix:

Most general lagrangians invariant under SM x S4 x Z5

l=vd

vT

 diag  12 f  yei
 , 1 g  yi

 , y

g=2 y1
vT y2

v

f = ye12 ye1vT
2−2 ye3vT v ye4 v

2

Assuming all y coefficients of O(1) 

m
e m

µ

m
τ

vT


~

v


~ C

2
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A model realization: S4 x Z5A model realization: S4 x Z5

Most general lagrangians invariant under SM x S4 x Z5

Neutrino sector:

Most general lagrangians invariant under SM x S4 x Z5

we assume that neutrino masses are generated by the See-Saw mechanism

=−mD
T mM

−1mD

Then we need both Majorana and Dirac mass matrices

L=
1
 c l hu  y1S y2 y3  Dirac part

c c hu bSca 
Majorana sector
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A model realization: S4 x Z5A model realization: S4 x Z5
After symmetry breaking we get a light neutrino mass matrix, 

diagonalized by TBM
with the following eigenvalues

m1=−vu

 
2 3 y1

vS− y2
v y3

u 2

au3bvs−c v
m2=−vu

 
2 2 y2

v y3
u2

a u2 cv
m3=vu

 
2 3 y 1

vS y2
v− y3

u 2

a u−3bvs−c v

Masses depend on six complex Yukawa parameters
No sum rules exist among them (unlike A4)

The model is less predictive but more manageable

easier to tune mass differences and recover the standard neutrino 
phenomenology (more about that later)
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Important:Vacuum alignmentImportant:Vacuum alignment
Any serious flavour model must derive the vacuum expectation values 

of the fields from  general principles 

To achieve this aim, one introduces new Standard Model singlet fields, 
DRIVING FIELDS with well defined transformation properties under S4 x Z5

-  we build the most general superpotential W allowed by the symmetries of 
the theory and derive the scalar potential in the usual way

V =∣∂W
∂ i

∣
2

mi
2∣i

2∣...

Since mi are expected to be smaller than the mass scales in W, we can neglect 
this term and then working in the SUSY limit 

V=0 ⇒ ∣∂W
∂i∣=0

We get a set of equations for the 
flavon field components; the 
solution of the system of equations 
is the VEV configuration 

fi are driving fields 
components
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A bit of phenomenologyA bit of phenomenology
The parameter space is quite large: neutrino masses depend on 6 complex 
Yukawa parameters as well as 3 complex vevs and 1 large scale Λ

The model is not really predictive: we can easily account for any 
experimental data coming from neutrino oscillations and almost any 
value for Σmi and mee are allowed

More interesting is to study the phenomenological consequences 
of the model assuming more natural conditions:
 
1 -  all Yukawa are O(1)      (natural values – no fine-tuning)
2 – the vevs are all of the same order of magnitude

The parameters of the 
model are then restricted 
requiring that  (3 σ)

msol
2 0

∣ matm
2 ∣=2.41±0.34×10−3eV 2

r=
msol

2

∣ matm
2 ∣

=0.032±0.006
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A bit of phenomenologyA bit of phenomenology
Three interesting observables:

∣m3

m2
∣ vs ∣mlightest∣ useful to see which mass hierarchy is allowed 

KATRIN sensitivity on m ~ 0.2 eV

Large hierarchies allowed for very 
small mlightest

Degenerate spectrum disfavoured

Normal hierarchy (NI): m1< m2 < m3 
Inverted hierarchy (NI): m3< m1 < m2 
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A bit of phenomenologyA bit of phenomenology

 mi 0.6 eV from 
WMAP+ACBAR+VSA+CBI+BOOMERANG

0.6 eV from 
WMAP+ACBAR+VSA+CBI+BOOMERANG

0.19 eV from the previous ones + Lyα

Σ mi too similar  to be distinguished using
the current cosmological information on the sum of the neutrino masses
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A bit of phenomenologyA bit of phenomenology

∣mee∣=∣m1U e1
2 m2U e2

2∣ in the limit of exact TBM

Many points in the region 
mlightest >~0.01eV where the two 
hierarchies can be distinguished

For NH, larger |mee| are favoured
For IH, almost any allowed |mee|  can 
be obtained

Salient feature: degenerate 
spectrum is disfavoured
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NLO correctionsNLO corrections
They are important because TBM is only an approximate description of 
the neutrino mixing matrix

NLO correction could affect any sector of the theory

Charged lepton and neutrino masses are modified by

Corrections to the vacuum alignment

〈〉〈〉LO where ~
〈〉LO



Higher order operators (HO) 
of O(1/Λ) compared to the LO 
lagrangian

Ltot=LLO 〈〉LOLLO LHO〈〉LO
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NLO correctionsNLO corrections

l~C
4 C

4 C
4

C
4 C

2 C
4

C
2 C

2 1  (λl)+ λl is diagonalized by an unitary  
U

l 
different from the identity ! U l~1 C

2 C
2

C
2 1 C

2

C
2 C

2 1
This is already enough to 
generate deviation 
from TBM

remember that 
UPMNS=U+

l Uν=U+
l UTBM

U PMNS= 23O C
2 

1
3

O C
2  OC

2 

−1
6

OC
2  1

3
OC

2  − 1
2

O C
2 

−1
6

OC
2  1

3
OC

2  1
2

O C
2  

In the charged lepton sector

These corrections give a new mass matrix whose entries are as follows
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NLO correctionsNLO corrections
Also in the neutrino sector the mass matrix is not diagonalized by TBM 

We get Ul  with elements of the firsts and second column corrected at 
O(λC

2), the last one is identical to TBM 
(this  needs NNLO corrections --- it is a model dependent feature)

FINAL RESULTS 

sin13=∣U e3∣~OC
2 

sin12=
∣U e2∣

1−∣U e3
2∣
~ 1

3
O C

2 

sin23=
∣U 3∣

1−∣U e3
2∣

~ 1
2

OC
2 
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ConclusionsConclusions

 
- TBM is a good description of neutrino experimental data

- Models for neutrino masses and mixing based on non-
abelian discrete symmetries are quite good in reproducing 
this pattern

- We presented an example based on S4, able to give NLO 
corrections to TBM compatible with the data

- Both normal and inverted hierarchies are allowed by the 
model. However, the degenerate spectrum is strongly 
disfavoured
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Backup slidesBackup slides
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Conjugate classes for S4Conjugate classes for S4

 C1:  1  

Given x,y in A, x ~ y if exists g of S4 so that y=g x

 C2:  S2, TS2T2, S2TS2T2  

 C3:  T, T2, S2T, S2T2 , STST2, STS, TS2, T2S2

 C4:  ST2, T2S, TST , TSTS2, STS2, S2TS

 C5:  S, TST2, ST , TS, S3, S3T2



34

The TBM mixing matrix vs dataThe TBM mixing matrix vs data

 

U TBM= 23 1
3

0

−1
6

1
3

− 1
2

−1
6

1
3

1
2


U exp= 0.79−0.88 0.47−0.61 0.2

0.19−0.52 0.42−0.73 0.58−0.82
0.20−0.53 0.44−0.74 0.56−0.81
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Compatibility with leptogenesisCompatibility with leptogenesis

 

Just an estimate....
The asymmetry parameters are defined as follows:

i=
1

8 Y Y ii
 j≠i ℑ Y Y ij

2 f ∣M j
2∣

∣M i
2∣

“hat” matrices are in the basis where the Majorana mass matrix is diagonal

f x=− x[ 2
x−1

log1 x
x ]For susy theories:

At the NLO, in 
the basis where 
charged leptons 
are diagonal:

vu Y=mDvu

' 

2 y1
S

For susy theories:

LO result 3X3 matrix of 
coefficients of O(1)
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Compatibility with leptogenesisCompatibility with leptogenesis

 

In the basis where Majorana mass matrix is diagonal:

At the leading order W = U
TMB 

and we get 

vu
Y=vu T Y 

NLO are crucial

Y Y =T Y  Y 
∗=diagonal matrix⇒i=0

 Y Y =T Y Y 
∗

1~2~ 
' 4~C

8~6×10−6

3=0
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Symmetry breakingSymmetry breaking

In the charged lepton sector (2):

We see that:

− T preserves  the subgroup (external to S4) generated by T 1= 0 0
0 1 0
0 0 2

and the most general mass 
matrix invariant under T

1
 is 

m1=0 0 X
0 0 X
0 0 X 

−
T
2


~001 preserves  the subgroup  generated by T 2=2 0 0

0  0
0 0 1 

and the most general mass 
matrix invariant under T

2
 is 

m2=0 X 0
0 X 0
0 X 0

−
T
3

2~100 preserves  the generator T 
and the conserved mass matrix is 

m3=X 0 0
X 0 0
X 0 0
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Symmetry breakingSymmetry breaking

m

m
~

T
2

 
T

~
T


= 0.06 ~ C

2

Then the low energy theory automatically 
produces hierarchical lepton mass matrix !

In particular:

l~C
4 C

2 1
C
4 C

2 1
C
4 C

2 1
And also m

e
/m

µ
 is correctly reproduced but

 clearly non diagonal 

Introduction of additional abelian symmetries to 
suppress the unwanted couplings
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Vacuum alignmentVacuum alignment
The alignment procedure works as follows

1-  we introduce these driving fields with well defined transformation 
properties under S4 x Z5

0
S~31,

3 0
T ~31,

2 0~2,3 0~1,2
2-  we build the most general superpotential allowed by the symmetries of 
the theory 

W =g 10
S S Sg20

S S g 30
S S g4 0

g50S S g60
h10

T T T h20
T T r10T T r20

Almost two separated sectors

3-  the scalar potential is generally given by 

V =∣∂W
∂ i

∣
2

mi
2∣i

2∣... φi = generic scalar field
mi = soft masses
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Vacuum alignmentVacuum alignment
Since mi are expected to be smaller than the mass scales in W, we 

can neglect this term and then working in the SUSY limit 
(we can account for soft breaking effects subsequently)

4- We get a set of equations for the flavon fields deriving W with respect 
to the components of the driving fields and set them = 0

V=0 ⇒ ∣∂W
∂i∣=0
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Vacuum alignmentVacuum alignment

∂W
∂01

T =2h1T 1

2 −T 2
T 3

h21T 2
2T 3

=0

∂W
∂02

T =2h1T 2

2 −T 1
T 3

h21T12T 2
=0

∂W
∂03

T =2h1T3
2 −T1T 2

h21T 3
2T1=0

charged lepton sector

∂W
∂ 0

=r1T1
2 2T2T 3

2 r212=0

〈T 〉=vT010 〈〉=v01 v=−2 h1
h2 vT
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Vacuum alignmentVacuum alignment

∂W
∂01

S =2 g1S1
2 −S 2S 3g 2S 1g31S 22S 3=0

neutrino sector

〈S 〉=vS111 〈〉=v11 v=
−g2u
2g3

∂W
∂02

S =2 g1S2
2 −S1S 3g 2S 3g31S12S 2=0

∂W
∂03

S =2 g1S3
2 −S 1S 2g 2S 2g31S32S1=0

∂W
∂01

=g41
2g5S 3

2 2S1S 2g62=0

∂W
∂02

=g42
2g5S 2

2 2S 1S 3g61=0

〈〉=u vS
2=

−2g 2g3 g6−g2
2 g4

12g5 g3
2
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