Neutrino masses and mixings from non-abelian discrete symmetries

Davide Meloni
Institut für Theoretische Physik und Astrophysik Universität Würzburg

Neutrino masses and Lepton flavor violation at the LHC
Würzburg, 24-25 Nov

Introduction

Neutrino physics is entering a "precision era"

Recent data

Solar sector

$$
\begin{gathered}
\begin{array}{c}
\text { from } \\
\text { Gonzalez-Garcia\&Maltoni, } \\
\text { Phys.Rept.460:1-129,2008 }
\end{array} \\
\qquad \begin{array}{c}
\Delta m_{21}^{2}=7.67_{-0.61}^{+0.67} \times 10^{-5} \mathrm{eV}^{2} \\
\theta_{12}=34.5_{-4.0}^{+4.8}
\end{array}
\end{gathered}
$$

Atmospheric sector

$$
\begin{gathered}
\Delta m_{31}^{2}=2.46_{-0.42}^{+0.47} \times 10^{-3} \mathrm{eV}^{2} \\
\theta_{23}=42.3_{-7.7}^{+11.3}
\end{gathered}
$$

What we still do not know

$$
\begin{gathered}
\theta_{13}-\delta_{C P} \\
\theta_{23}=45^{\circ} ? \\
\text { mass hierarchy }
\end{gathered}
$$

Introduction

The data seem to be described by:
$\sin \theta_{13}=0$ $\tan ^{2} \theta_{23}=1$ $\tan ^{2} \theta_{12}=1 / 2$

Very good first order approximation,
called Tri-Bimaximal mixing (TBM)

The crucial question is:

Is TBM real?

YES

One can invoke discrete symmetry groups which naturally give TBM at lowest order:
D4, A4, S3, S4

NO

Agreement with data is accidental: many models fit the data and TBM does not play any fundamental role

Introduction

We follow here the approach YES

See talks by Majee and Seidl for models of type NO

General characteristics and predictions

The leading order (LO) results is TBM

Having specified the field content, the corrections (NLO) to TBM mixing arise from higher dimensional effective operators

All mixing angles receive corrections of the same order of magnitude, unless very special dynamical tricks are used

The scale of the corrections is fixed from the solar angles (most contrained angle)

Introduction

$$
\sin ^{2}\left(2 \theta_{12}\right)^{\exp p}-\sin ^{2}\left(2 \theta_{12}\right)^{\text {TBM }} \sim O\left(\lambda_{c}^{2}\right) \sim 0.04
$$

note that $\lambda_{c}{ }^{2}$ is a convenient hierarchy parameter not only for quarks but also in the charged lepton sector

$$
\begin{aligned}
& \left(m_{\mu} / m_{\tau}\right) \sim 0.06 \sim \lambda_{c}^{2} \\
& \left(m_{e} / m_{\tau}\right) \sim 0.005 \sim \lambda_{c}^{3-4}
\end{aligned}
$$

$$
\text { Relevant prediction: } \theta_{13} \sim O\left(\lambda_{c}{ }^{2}\right)
$$

within the sensitivity of the experiments which are now in preparation

Important: exp data do not exclude $\theta_{13} \sim O\left(\lambda_{c}\right)$
If so, once could argue that TBM is just an accidental coincidence

The neutrino mixing matrix

We know from oscillation experiments that neutrinos are massive and are at least 3: mass and flavor bases are different

The mixing matrix connects these two bases,
like the CKM for quarks

Flavour eigenstates
What is its origin?

- Mass eigenstates

After EW symmetry breaking you get mass matrices
leptonic mass matrix: no real and no symmetric
neutrino mass matrix: no real but symmetric

The neutrino mixing matrix

To obtain the mass eigenvalues one needs to diagonalize both mass matrices

$$
\left(\lambda^{\prime}\right)^{+} \lambda^{\prime} \text { is diagonalized by an unitary } U_{\text {, }}
$$

$$
\lambda^{V} \quad \text { is diagonalized by an unitary } \bigcup_{V}
$$

Interaction lagrangian in the lepton sector

$$
\begin{gathered}
\bar{l}_{L} \mathcal{\gamma}_{\mu} v_{L} \Rightarrow\left(U_{l}^{+} U_{\nu}\right) \bar{l}_{L} \gamma_{\mu} v_{L} \\
U_{P M N S}=U^{+} U_{v}
\end{gathered}
$$

The neutrino mixing matrix

$$
U_{P M N S}=U_{l}^{+} U_{v}
$$

PMNS=Pontecorvo-Maki-Nakagawa-Sakata
Relevant feature: both charged and neutral leptons contribute to the neutrino mixing matrix !!!

Experimental data are very well described with the following ansatz:

$$
\begin{gathered}
U_{P M N S}=U_{T B M}+O\left(\lambda_{C}^{2}\right) \text { corrections } \\
U_{P M N S}=R_{23}\left(\theta_{23}\right) R_{13}\left(\theta_{13}, \delta\right) R_{12}\left(\theta_{12}\right) \quad U_{T B M}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right):
\end{gathered}
$$

The model building

Large interest in recent years to find models which reproduce, at least al LO, the TBM behaviour of the data (no GUT models in the list...)

[^0]
TBM and discrete symmetries

The question is: why discrete non-abelian groups work so well
Let us first consider the case in which the data are exactly explained in terms of TBM

In the basis where charged leptons are diagonal

Since U_{v} diagonalizes the neutrino mass matrix we can infer the most general structure of λ^{v}

$$
U_{l}=I \Rightarrow U_{P M N S}=U_{V}=U_{T B M}
$$

$$
\left.\lambda^{v}=\left\lvert\, \begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right.\right)
$$

This is a symmetric, 2-3 symmetric matrix with $a_{11}+a_{12}=a_{22}+a_{23}$

TBM and discrete symmetries

Then if you want to get a TBM neutrino mixing you must be able to produce this kind of mass matrix

Let us take to group S4 to illustrate how these models generally work
1 - 54 is the group of permutations of 4 objects $\rightarrow 24$ objects
2 - as usual, to generate all the group elements we need to identify " generators of the group" and their action
these are called S and T

One possible "representation": $S^{2}=T^{3}=1$ and $S T^{2} S=T$
3 - they act as follows:

$$
\begin{aligned}
& (1234) \rightarrow(2341) \text { under } S \\
& (1234) \rightarrow(2314) \text { under } T
\end{aligned}
$$

TBM and discrete symmetries

Now we are done!
The 24 elements are obtained considering all possible permutations of 1234. They belong to 5 conjugate classes...

4 - the \# of irreducible representations = \# of conjugate classes

S4 has 5 irreducible representations

- two singlets 1_{1} and $1_{2} \rightarrow$ useful for SM singlets
- one doublet $2 \rightarrow$ useful for quarks
- two triplets 3_{1} and $3_{2} \rightarrow$ useful for leptons

5 - a model is built when one specifies the field content and assign them to representation of the group

6 - all the interactions must respect the SM as well as the $S 4$ symmetries $_{12}$

TBM and discrete symmetries

A representation of the group

$$
\begin{array}{ll}
1: \quad S=1 \quad T=1 & 2: \quad S=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad T=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right) \text { where } \omega=e^{2 \pi i / 3} \\
1_{2}: \quad S=-1 \quad T=1 & T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) \quad 3_{2}: S \rightarrow-S \quad T \rightarrow T
\end{array}
$$

Table of multiplication

$$
\begin{gathered}
1_{1} \otimes a n y=\text { any } \\
1_{2} \otimes 1_{2}=1_{1} \quad 1_{2} \otimes 2=2 \quad 1_{2} \otimes 3_{j}=3_{j} \\
2 \otimes 2=1_{1}+1_{2}+2 \quad 2 \otimes 3_{i}=3_{1}+3_{2} \\
3_{i} \otimes 3_{i}=1_{1}+2+3_{1}+3_{2} \quad 3_{1} \otimes 3_{2}=1_{2}+2+3_{1}+3_{2}
\end{gathered}
$$

TBM and discrete symmetries

The TBM is derived considering that:

S4 is a symmetry of the Nature at a very high energy scale Λ
the symmetry is spontaneously broken by a set of scalar multiplets Φ (FLAVONS) with VEV aligned in some particular directions

The preserved subgroups have to be different in the charged and neutrino sectors otherwise

$$
U_{l}=U_{v} \quad \Rightarrow \quad U_{P M N S}=I
$$

Different symmetry breaking patterns allowed !!!

Symmetry breaking

In the neutrino sector:

Choose the vevs of flavon fields as

This choice breaks T but preserves S :
This also preserves the element

$$
\varphi_{S} \approx\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

$$
T \varphi_{S} \neq \varphi_{S} \quad S \varphi_{S}=\varphi_{S}
$$

$$
\operatorname{TSTS} S^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

The preserved group after symmetry breaking is $Z_{2} X Z_{2}$

$$
S \lambda^{v} S=\lambda^{v} \quad\left(T S T S^{2}\right) \lambda^{v}\left(T S T S^{2}\right)=\lambda^{v}
$$

The most general neutrino mass matrix diagonalized by TBM is left invariant by the generators of this subgroup of $S 4!!!{ }^{15}$

Symmetry breaking

In the charged lepton sector:

Choose the vevs of flavon fields as

The group S4 is completely broken

$$
\varphi_{T} \approx\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Having obtained TBM in the neutrino sector, U_{1} must be the identity
$\left(\lambda^{\prime}\right)^{+} \lambda^{\prime}$ must be a diagonal matrix and, at the same time, we need to mantain the hierarchy between the masses of charged leptons

This is achieved observing that:
hierarchy: $\phi_{T}, \phi_{T}{ }^{2} / \Lambda$ and $\phi_{T}{ }^{3} / \Lambda^{2}$ preserve different subgroups (not of S4) with invariant mass matrices with only 1 column different from zero diagonal form: Z_{N} eliminates unwanted couplings

A model realization: $54 \times \mathbb{Z} 5$

Standard Model fields + right-handed neutrinos
$S_{4}: \quad \nu^{c}=\left(\begin{array}{c}v_{e}^{c} \\ v_{\mu}^{c} \\ v_{\tau}^{c}\end{array}\right) \sim 3_{1} \quad l=\binom{\left(v_{e}\right.}{e} .\binom{v_{\mu}}{\mu} \sim 3_{1} \quad e^{c} \sim 1_{2} \quad \mu^{c} \sim 1_{1} \quad \tau^{c} \sim 1_{1}$
Z_{5} :
ω^{2}
1
ω^{3}
ω^{2}
ω

Higgs fields

$$
h_{u} \sim\left(1_{1}, \omega^{2}\right) \quad h_{d} \sim\left(1_{1}, 1\right)
$$

A model realization: $54 \times \mathbb{Z} 5$

Symmetry breaking sector

Charged leptons:

$$
\varphi_{T} \sim\left(3_{1}, \omega^{4}\right) \quad \eta \sim\left(2, \omega^{4}\right)
$$

Neutrino sector:

$$
\begin{gathered}
\varphi_{S} \sim\left(3_{1} \omega\right) \quad \Delta \sim(2, \omega) \quad \xi \sim\left(1_{1} \omega\right) \\
\text { remember } \quad \text { and also } \\
\left\langle\varphi_{T}\right\rangle=v_{T}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left\langle\varphi_{S}\right\rangle=v_{S}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad\langle\eta\rangle=v_{\eta}\binom{0}{1}\langle\Delta\rangle=v_{\Delta}\binom{1}{1}\langle\xi\rangle=u
\end{gathered}
$$

A model realization: $54 \times \mathbb{Z} 5$

Most general lagrangians invariant under SM $\times S 4 \times Z 5$

Charged leptons:

$$
\begin{aligned}
L= & \frac{y_{T}}{\Lambda} \tau^{c}\left(l \varphi_{T}\right) h_{d} \longrightarrow \\
& \frac{y_{\mu 1}}{\Lambda^{2}} \mu^{c}\left(l \varphi_{T} \varphi_{T}\right) h_{d}+\frac{y_{\mu 2}}{\Lambda^{2}} \mu^{c}\left(l \varphi_{T} \eta\right) h_{d}
\end{aligned}
$$

$$
\text { electron }\left\{\begin{array}{l}
\frac{y_{e 1}}{\Lambda^{3}} e^{c}\left[l \varphi_{T}\left(\varphi_{T} \varphi_{T}\right)_{2}\right] h_{d}+\frac{y_{e 2}}{\Lambda^{3}} e^{c}\left[l \varphi_{T}\left(\varphi_{T} \varphi_{T}\right)_{3_{1}}\right] h_{d} \\
\frac{y_{e 3}}{\Lambda^{3}} e^{c}\left[\ln \left(\varphi_{T} \varphi_{T}\right)_{3_{1}}\right] h_{d}+\frac{y_{e 4}}{\Lambda^{3}} e^{c}\left[l \varphi_{T}(\eta \eta)_{2}\right] h_{d}
\end{array}\right.
$$

A model realization: $54 \times \mathbb{Z} 5$

Most general lagrangians invariant under SM $\times S 4 \times Z 5$
Charged leptons mass matrix:

$$
\begin{aligned}
& \lambda^{\prime}=v_{d} \frac{v_{T}}{\Lambda} \operatorname{diag}(\underbrace{\frac{1}{\Lambda^{2}} f\left(y_{e_{1}}\right)}_{m_{e}} \underbrace{\begin{array}{l}
\text { m }
\end{array}}_{\underbrace{\frac{1}{\Lambda} g\left(y_{\mu_{1}}\right)}_{m_{\mu}}, y_{\tau})} \begin{array}{l}
\mathrm{m}=\left(y_{e_{1}}+2 y_{e_{1}}\right) v_{T}^{2}-2 y_{e_{3}} v_{T} v_{\eta}+y_{e_{4}} v_{\eta}^{2} \\
g=2 y_{\mu_{1}} v_{T}+y_{\mu_{2}} v_{\eta}
\end{array}
\end{aligned}
$$

Assuming all y coefficients of $O(1) \longrightarrow \frac{v_{T}}{\Lambda} \sim \frac{v_{n}}{\Lambda} \sim \lambda_{C}^{2}$

A model realization: $54 \times \mathbb{Z} 5$

Most general lagrangians invariant under $\mathrm{SM} \times \mathrm{S} 4 \times \mathrm{Z} 5$

Neutrino sector:

we assume that neutrino masses are generated by the See-Saw mechanism

$$
\lambda^{v}=-m_{D}^{T} m_{M}^{-1} m_{D}
$$

Then we need both Majorana and Dirac mass matrices

$$
\begin{aligned}
L_{v} & =\frac{1}{\Lambda} v^{c} l h_{u}\left(y_{v_{1}} \varphi_{S}+y_{v_{2}} \Delta+y_{v_{3}} \xi\right) \quad \text { Dirac part } \\
& +v^{c} v^{c} h_{u}\left(b \varphi_{S}+c \Delta+a \xi\right)
\end{aligned}
$$

Majorana sector

A model realization: $54 \times \mathbb{Z} 5$

After symmetry breaking we get a light neutrino mass matrix, diagonalized by TBM
with the following eigenvalues
$m_{1}=-\left(\frac{v_{u}}{\Lambda}\right)^{2} \frac{\left(3 y_{v_{1}} v_{S}-y_{v_{2}} v_{\Delta}+y_{v_{s}} u\right)^{2}}{a u+3 b v_{s}-c v_{\Delta}} \quad m_{2}=-\left(\frac{v_{u}}{\Lambda}\right)^{2} \frac{\left(2 y_{v_{2}} v_{\Delta}+y_{v_{3}} u\right)^{2}}{a u+2 c v_{\Delta}} \quad m_{3}=\left(\frac{v_{u}}{\Lambda}\right)^{2} \frac{\left(3 y_{v_{1}} v_{s}+y_{v_{2}} v_{\Delta}-y_{v_{s}} u\right)^{2}}{a u-3 b v_{s}-c v_{\Delta}}$
Masses depend on six complex Yukawa parameters
No sum rules exist among them (unlike A4)

The model is less predictive but more manageable easier to tune mass differences and recover the standard neutrino phenomenology (more about that later)

Important:Vacuum alignment

Any serious flavour model must derive the vacuum expectation values of the fields from general principles

To achieve this aim, one introduces new Standard Model singlet fields, DRIVING FIELDS with well defined transformation properties under S4×Z5

- we build the most general superpotential W allowed by the symmetries of the theory and derive the scalar potential in the usual way

$$
V=\Sigma\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+m_{i}^{2}\left|\phi_{i}^{2}\right|+\ldots \quad \begin{aligned}
& \phi_{i} \text { are driving fields } \\
& \text { components }
\end{aligned}
$$

Since m_{i} are expected to be smaller than the mass scales in W, we can neglect this term and then working in the SUSY limit

$$
V=0 \Rightarrow\left|\frac{\partial W}{\partial \phi_{i}}\right|=0
$$

We get a set of equations for the flavon field components; the solution of the system of equations is the VEV configuration

A bit of phenomenology

The parameter space is quite large: neutrino masses depend on 6 complex Yukawa parameters as well as 3 complex vevs and 1 large scale Λ

The model is not really predictive: we can easily account for any experimental data coming from neutrino oscillations and almost any value for Σm_{i} and $m_{e e}$ are allowed

More interesting is to study the phenomenological consequences of the model assuming more natural conditions:

1 - all Yukawa are O (1) (natural values - no fine-tuning)
2 - the vevs are all of the same order of magnitude

The parameters of the model are then restricted requiring that (3σ)

$$
\begin{gathered}
\Delta m_{\text {sol }}^{2}>0 \\
\left|\Delta m_{\text {atm }}^{2}\right|=2.41 \pm 0.34 \times 10^{-3} \mathrm{eV}^{2} \\
r=\frac{\Delta m_{\text {sol }}^{2}}{\left|\Delta m_{\text {atm }}^{2}\right|}=0.032 \pm 0.006
\end{gathered}
$$

A bit of phenomenology

Three interesting observables:

$\left\lvert\,$| $\left\|\begin{array}{l}m_{3} \\ m_{2}\end{array}\right\|$ |
| :--- | | vs $\quad\left\|m_{\text {lightest }}\right\| \quad$useful to see which mass hierarchy is allowed
 Normal hierarchy (NI): $m_{1}<m_{2}<m_{3}$
 Inverted hierarchy (NI): $m_{3}<m_{1}<m_{2}$ |
| ---: |
| KATRIN sensitivity on $m \sim 0.2 \mathrm{eV}$ |\right.

Degenerate spectrum disfavoured

Large hierarchies allowed for very small $m_{\text {lightest }}$

A bit of phenomenology

$\sum m_{i}$

> 0.6 eV from
> WMAP $+\mathrm{ACBAR}+\mathrm{VSA}+C B I+B O O M E R A N G$

Σm_{i} too similar to be distinguished using
the current cosmological information on the sum of the neutrino masses

A bit of phenomenology

$$
\left|m_{e e}\right|=\left|m_{1} U_{e 1}^{2}+m_{2} U_{e 2}^{2}\right|
$$

in the limit of exact TBM

Many points in the region $m_{\text {lightest }}>\sim 0.01 \mathrm{eV}$ where the two hierarchies can be distinguished

For NH, larger $\left|m_{e e}\right|$ are favoured For IH, almost any allowed $\left|m_{e e}\right|$ can be obtained

Salient feature: degenerate spectrum is disfavoured

NLO corrections

They are important because TBM is only an approximate description of the neutrino mixing matrix

NLO correction could affect any sector of the theory

Charged lepton and neutrino masses are modified by

Corrections to the vacuum alignment

$$
\begin{gathered}
\langle\Phi\rangle \rightarrow\left\rangle^{L O}+\delta \Phi \text { where } \delta \Phi \sim \frac{\langle\Phi\rangle^{L O}}{\Lambda}\right. \text { of O(1/八) compared to the LO } \\
L^{t o t}=L^{L O}\left(\langle\Phi\rangle^{L O}\right)+L^{L O}(\delta \Phi)+L^{H O}\left(\langle\Phi\rangle^{L O}\right)_{28}
\end{gathered}
$$

NLO corrections

In the charged lepton sector

These corrections give a new mass matrix whose entries are as follows
$\lambda^{l} \sim\left(\begin{array}{ccc}\lambda_{C}^{4} & \lambda_{C}^{4} & \lambda_{C}^{4} \\ \lambda_{C}^{4} & \lambda_{C}^{2} & \lambda_{C}^{4} \\ \lambda_{C}^{2} & \lambda_{C}^{2} & 1\end{array}\right)$
$\left(\lambda^{\prime}\right)^{+} \lambda^{\prime}$ is diagonalized by an unitary U_{1} different from the identity!

This is already enough to generate deviation from TBM
remember that
$U_{\text {PMNS }}=U^{+}, U_{v}=U^{+}, U_{T B M}$

$$
\begin{aligned}
& \text { to } \\
& U_{P M N S}=\left(\begin{array}{l}
\sqrt{\frac{2}{3}}+O\left(\lambda_{C}^{2}\right) \frac{1}{\sqrt{3}}+O\left(\lambda_{C}^{2}\right) O\left(\lambda_{C}^{2}\right) \\
\frac{-1}{\sqrt{6}}+O\left(\lambda_{C}^{2}\right) \frac{1}{\sqrt{3}}+O\left(\lambda_{C}^{2}\right)-\frac{1}{\sqrt{2}}+O\left(\lambda_{C}^{2}\right) \\
\frac{-1}{\sqrt{6}}+O\left(\lambda_{C}^{2}\right) \frac{1}{\sqrt{3}}+O\left(\lambda_{C}^{2}\right) \frac{1}{\sqrt{2}}+O\left(\lambda_{C}^{2}\right)
\end{array}\right) .
\end{aligned}
$$

NLO corrections

Also in the neutrino sector the mass matrix is not diagonalized by TBM We get U_{1} with elements of the firsts and second column corrected at $O\left(\lambda_{c}{ }^{2}\right)$, the last one is identical to TBM (this needs NNLO corrections --- it is a model dependent feature)

FINAL RESULTS

$$
\begin{gathered}
\sin \theta_{13}=\left|U_{e 3}\right| \sim O\left(\lambda_{C}^{2}\right) \\
\sin \theta_{12}=\frac{\left|U_{e 2}\right|}{\sqrt{1-\left|U_{e 3}^{2}\right|}} \sim \frac{1}{\sqrt{3}}+O\left(\lambda_{C}^{2}\right) \\
\sin \theta_{23}=\frac{\left|U_{\mu 3}\right|}{\sqrt{1-\left|U_{e 3}^{2}\right|}} \sim \frac{1}{\sqrt{2}}+O\left(\lambda_{C}^{2}\right)
\end{gathered}
$$

Conclusions

- TBM is a good description of neutrino experimental data
- Models for neutrino masses and mixing based on nonabelian discrete symmetries are quite good in reproducing this pattern
- We presented an example based on S4, able to give NLO corrections to TBM compatible with the data
- Both normal and inverted hierarchies are allowed by the model. However, the degenerate spectrum is strongly disfavoured

Backup slides

Conjugate classes for 54

Given x, y in $A, x \sim y$ if exists g of $S 4$ so that $y=g x$

C1: 1

C2: $S^{2}, T^{2} T^{2}, S^{2} T S^{2} T^{2}$
C3: $T, T^{2}, S^{2} T, S^{2} T^{2}, S T S T^{2}, S T S, T S^{2}, T^{2} S^{2}$
C4: $S T^{2}, T^{2} S, T S T, T S T S^{2}, S T S^{2}, S^{2} T S$
C5: $S, T S T T^{2}, S T, T S, S^{3}, S^{3} T^{2}$

The TBM mixing matrix vs data

$$
\begin{gathered}
U_{\text {твм }}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
U_{\exp }=\left(\begin{array}{ccc}
0.79-0.88 & 0.47-0.61<0.2 \\
0.19-0.52 & 0.42-0.73 & 0.58-0.82 \\
0.20-0.53 & 0.44-0.74 & 0.56-0.81
\end{array}\right)
\end{gathered}
$$

Compatibility with leptogenesis

Just an estimate....
The asymmetry parameters are defined as follows:

$$
\epsilon_{i}=\frac{1}{8 \pi\left(\tilde{Y} \tilde{Y^{+}}\right)_{i i}} \sum_{j \neq i} \mathfrak{J}\left(\tilde{Y} \tilde{Y}^{+}\right)_{i j}^{2} f\left(\frac{\left|M_{j}^{2}\right|}{\left|M_{i}^{2}\right|}\right)
$$

"hat" matrices are in the basis where the Majorana mass matrix is diagonal

For susy theories:

$$
f(x)=-\sqrt{x}\left[\frac{2}{x-1}+\log \left(\frac{1+x}{x}\right)\right]
$$

At the NLO, in the basis where charged leptons are diagonal:

$$
\begin{aligned}
& v_{u} Y=\left(m_{D}+v_{u} \frac{\epsilon}{\epsilon} \epsilon^{2} y_{v_{1}} S\right) \\
& \text { LO result } \begin{array}{l}
3 \times 3 \text { matrix of } \\
\text { coefficients of } O(1)
\end{array}
\end{aligned}
$$

Compatibility with leptogenesis

In the basis where Majorana mass matrix is diagonal:

$$
v_{u} \tilde{Y}=v_{u} \Omega^{T} Y_{v}
$$

At the leading order $\Omega=U_{\text {TMB }}$ and we get

$$
\begin{gathered}
\tilde{Y} \tilde{Y}^{+}=\Omega^{T} Y_{v} Y_{v}^{+} \Omega^{*}=\text { diagonal matrix } \Rightarrow \epsilon_{i}=0 \\
\text { NLO are crucial } \\
\delta\left(\tilde{Y} \tilde{Y}^{+}\right)=\Omega^{T} \delta\left(Y_{v} Y_{v}^{+}\right) \Omega^{*} \\
\epsilon_{1} \sim \epsilon_{2} \sim\left(\frac{\epsilon}{\epsilon^{\prime}}\right) \epsilon^{4} \sim \lambda_{C}^{8} \sim 6 \times 10^{-6} \\
\epsilon_{3}=0
\end{gathered}
$$

Symmetry breaking

In the charged lepton sector (2):

We see that:

- φ_{T} preserves the subgroup (external to S4) generated by $T_{1}=\left(\begin{array}{ccc}\omega & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \omega^{2}\end{array}\right)$
and the most general mass $m_{1}=\left(\begin{array}{lll}0 & 0 & X \\ 0 & 0 & X \\ 0 & 0\end{array}\right)$ matrix invariant under T_{1} is

$$
m_{1}=\left(\begin{array}{lll}
0 & 0 & X \\
0 & 0 & X
\end{array}\right)
$$

$-\frac{\varphi_{T}^{2}}{\Lambda} \sim\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ preserves the subgroup generated by $T_{2}=\left(\begin{array}{ccc}\begin{array}{c}\omega^{2} \\ 0\end{array} & 0 & \\ 0 & \omega & 0 \\ 0 & 0 & 1\end{array}\right)$
and the most general mass $m_{2}=\left(\begin{array}{lll}0 & X & 0 \\ 0 & X & 0 \\ 0 & X & 0\end{array}\right)$
$-\frac{\varphi_{T}^{3}}{\Lambda^{2}} \sim\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \begin{aligned} & \text { preserves the generator } T \\ & \text { and the conserved mass matrix is }\end{aligned} \quad m_{3}=\left(\begin{array}{lll}X & 0 & 0 \\ X & 0 & 0 \\ X & 0 & 0\end{array}\right)$

Symmetry breaking

Then the low energy theory automatically produces hierarchical lepton mass matrix!

In particular:

$$
\frac{m_{\mu}}{m_{\tau}} \sim \frac{\left(\frac{\varphi_{T}^{2}}{\Lambda}\right)}{\varphi_{T}} \sim \frac{\varphi_{T}}{\Lambda}=0.06 \sim \lambda_{C}^{2}
$$

And also m_{e} / m_{μ} is correctly reproduced but

$$
\lambda^{l} \sim\left(\begin{array}{lll}
\lambda_{C}^{4} & \lambda_{C}^{2} & 1 \\
\lambda_{C}^{4} & \lambda_{C}^{2} & 1 \\
\lambda_{C}^{4} & \lambda_{C}^{2} & 1
\end{array}\right) \quad \text { clearly non diagonal }
$$

Introduction of additional abelian symmetries to suppress the unwanted couplings

Vacuum alignment

The alignment procedure works as follows
1- we introduce these driving fields with well defined transformation properties under $\mathrm{S} 4 \times \mathrm{Z} 5$

$$
\varphi_{0}^{S} \sim\left(3_{1}, \omega^{3}\right) \quad \varphi_{0}^{T} \sim\left(3_{1}, \omega^{2}\right) \Delta_{0} \sim\left(2, \omega^{3}\right) \rho_{0} \sim\left(1, \omega^{2}\right)
$$

2- we build the most general superpotential allowed by the symmetries of the theory

$$
\begin{aligned}
W & =g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right) \\
& +g_{2}\left(\varphi_{0}^{S} \varphi_{S} \xi\right)+g_{3}\left(\varphi_{0}^{S} \varphi_{S} \Delta\right)+g_{4}\left(\Delta_{0} \Delta \Delta\right) \\
& +g_{5}\left(\Delta_{0} \varphi_{S} \varphi_{S}\right)+g_{6}\left(\Delta_{0} \Delta \xi\right) \\
& +h_{1}\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right)+h_{2}\left(\varphi_{0}^{T} \eta \varphi_{T}\right)+r_{1} \rho_{0}\left(\varphi_{T} \varphi_{T}\right)+r_{2} \rho_{0}(\eta \eta)
\end{aligned}
$$

3- the scalar potential is generally given by

$$
V=\Sigma\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+m_{i}^{2}\left|\phi_{i}^{2}\right|+\ldots \quad \begin{aligned}
& \phi_{i}=\text { generic scalar field } \\
& m_{i}=\text { soft masses }
\end{aligned}
$$

Vacuum alignment

Since m_{i} are expected to be smaller than the mass scales in W, we can neglect this term and then working in the SUSY limit
(we can account for soft breaking effects subsequently)

$$
V=0 \Rightarrow\left|\frac{\partial W}{\partial \phi_{i}}\right|=0
$$

4- We get a set of equations for the flavon fields deriving W with respect to the components of the driving fields and set them $=0$

Vacuum alignment

charged lepton sector

$$
\begin{gathered}
\frac{\partial W}{\partial \varphi_{01}^{T}}=2 h_{1}\left(\varphi_{T_{1}}^{2}-\varphi_{T_{2}} \varphi_{T_{3}}\right)+h_{2}\left(\eta_{1} \varphi_{T_{2}}+\eta_{2} \varphi_{T_{3}}\right)=0 \\
\frac{\partial W}{\partial \varphi_{02}^{T}}=2 h_{1}\left(\varphi_{T_{2}}^{2}-\varphi_{T_{1}} \varphi_{T_{3}}\right)+h_{2}\left(\eta_{1} \varphi_{T_{1}}+\eta_{2} \varphi_{T_{2}}\right)=0 \\
\frac{\partial W}{\partial \varphi_{03}^{T}}=2 h_{1}\left(\varphi_{T_{3}}^{2}-\varphi_{T_{1}} \varphi_{T_{2}}\right)+h_{2}\left(\eta_{1} \varphi_{T_{3}}+\eta_{2} \varphi_{T_{1}}\right)=0 \\
\frac{\partial W}{\partial \rho_{0}}=r_{1}\left(\varphi_{T_{1}}^{2}+2 \varphi_{T_{2}} \varphi_{T_{3}}\right)+2 r_{2} \eta_{1} \eta_{2}=0 \\
\left\langle\varphi_{T}\right\rangle=v_{T}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad\langle\eta\rangle=v_{\eta}\binom{0}{1} \quad v_{\eta}=-2\left(\frac{h_{1}}{h_{2}}\right) v_{T}
\end{gathered}
$$

Vacuum alignment

neutrino sector

$$
\begin{gathered}
\frac{\partial W}{\partial \varphi_{01}^{S}}=2 g_{1}\left(\varphi_{S_{1}}^{2}-\varphi_{S_{2}} \varphi_{S_{3}}\right)+g_{2} \xi \varphi_{S_{1}}+g_{3}\left(\Delta_{1} \varphi_{S_{2}}+\Delta_{2} \varphi_{S_{3}}\right)=0 \\
\frac{\partial W}{\partial \varphi_{02}^{S}}=2 g_{1}\left(\varphi_{S_{2}}^{2}-\varphi_{S_{1}} \varphi_{S_{3}}\right)+g_{2} \xi \varphi_{S_{3}}+g_{3}\left(\Delta_{1} \varphi_{S_{1}}+\Delta_{2} \varphi_{S_{2}}\right)=0 \\
\frac{\partial W}{\partial \varphi_{03}^{S}}=2 g_{1}\left(\varphi_{S_{3}}^{2}-\varphi_{S_{1}} \varphi_{S_{2}}\right)+g_{2} \xi \varphi_{S_{2}}+g_{3}\left(\Delta_{1} \varphi_{S_{3}}+\Delta_{2} \varphi_{S_{1}}\right)=0 \\
\\
\frac{\partial W}{\partial \Delta_{01}}=g_{4} \Delta_{1}^{2}+g_{5}\left(\varphi_{S_{3}}^{2}+2 \varphi_{S_{1}} \varphi_{S_{2}}\right)+g_{6} \xi \Delta_{2}=0 \\
\frac{\partial W}{\partial \Delta_{02}}=g_{4} \Delta_{2}^{2}+g_{5}\left(\varphi_{S_{2}}^{2}+2 \varphi_{S_{1}} \varphi_{S_{3}}\right)+g_{6} \xi \Delta_{1}=0 \\
\left\langle\varphi_{S}\right\rangle=v_{S}\left(\begin{array}{ll}
1 \\
1 \\
1
\end{array}\right) \quad\langle\Delta\rangle=v_{\Delta}\binom{1}{1}\langle\xi\rangle=u \quad v_{\Delta}=\frac{-g_{2} u}{2 g_{3}} \quad v_{S}^{2}=\frac{-2 g_{2} g_{3} g_{6}-g_{2}^{2} g_{4}}{12 g_{5} g_{3}^{2}}
\end{gathered}
$$

[^0]: E. M a and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arX iv:hep-ph/0106291];
 E. M a, M od. Phys. Lett. A 17 (2002) 627 [arX iv:hep-ph/0203238]; K. S. Babu,
 E. M a and J. W. F. Valle, Phys. Lett. B 552 (2003) 207 [arX iv:hep-ph0206292];

 M . Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del M oral, arX iv:hep-ph/0312244; Phys. Rev. D 69 (2004) 093006 [arX iv:hep-ph/0312265]; E. Ma, Phys. Rev. D 70 (2004) 031901; Phys. Rev. D 70 (2004) 031901 [arX iv:hepph/ 0404199]; New J. Phys. 6 (2004) 104 [arX iv:hep-ph/0405152]; arX iv:hepph/ 0409075 ; S. L. Chen, M . Frigerio and E. M a, Nucl. Phys. B 724 (2005) 423 [arX iv:hep-ph0504181]; E. Ma, Phys. Rev. D 72 (2005) 037301 [arX iv:hepph/ 0505209]; M . Hirsch, A. Villanova del M oral, J. W. F. Valle and E. M a, Phys. Rev. D 72 (2005) 091301 [Erratum-ibid. D 72 (2005) 119904] [arX iv:hepph/ 0507148]; K. S. Babu and X . G. He, arX iv:hep-ph/0507217; E. M a, M od. Phys. Lett. A 20 (2005) 2601 arX iv:hep-ph0508099]; A. Zee, Phys. Lett. B 630 (2005) 58 [arX iv:hep-ph0508278]; E. Ma, Phys. Rev. D 73 (2006) 057304 [arX iv:hepph/ 0511133]; X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604 (2006) 039 [arX iv:hep-ph/0601001]; B . A dhikary, B . B rahmachari, A . Ghosal, E. M a and M . K . Parida, Phys. Lett. B 638 (2006) 345 [arX iv:hep-ph0603059]; E. M a, M od. Phys. Lett. A 21 (2006) 2931 [arX iv:hep-ph/0607190]; M od. Phys. Lett. A 22 (2007) 101 [arX iv:hep-ph/0610342]; L. Lavoura and H. Kuhbock, M od. Phys. Lett. A 22E. M a and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arX iv:hep-ph/0106291]; E. M a, M od. Phys. Lett. A 17 (2002) 627 [arX iv:hep-ph/0203238]; K. S. Babu, E. M a and J. W. F. Valle, Phys. Lett. B 552 (2003) 207 [arX iv:hep-ph/0206292]; M. Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del M oral, arX iv:hep-ph/0312244; Phys. Rev. D 69 (2004) 093006 [arX iv:hep-ph/0312265]; E. Ma, Phys. Rev. D 70 (2004) 031901; Phys. Rev. D 70 (2004) 031901 [arX iv:hepph/ 0404199]; New J. Phys. 6 (2004) 104 [arX iv:hep-ph/0405152]; arX iv:hepph/ 0409075; S. L. Chen, M . Frigerio and E. Ma, Nucl. Phys. B 724 (2005) 423 [arX iv:hep-ph0504181]; E. Ma, Phys. Rev. D 72 (2005) 037301 [arX iv:hepph/ 0505209]; M. Hirsch, A. Villanova del M oral, J. W. F. Valle and E. M a, Phys. Rev. D 72 (2005) 091301 [Erratum-ibid. D 72 (2005) 119904] [arX iv:hepph/ 0507148]; K. S. B abu and X . G. He, arX iv:hep-ph0507217; E. M a, M od. Phys. Lett. A 20 (2005) 2601 arX iv:hep-ph0508099]; A. Zee, Phys. Lett. B 630 (2005) 58 [arX iv:hep-ph0508278]; E. Ma, Phys. Rev. D 73 (2006) 057304 [arX iv:hepph/ 0511133]; X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604 (2006) 039 [arX iv:hep-ph/0601001]; B . Adhikary, B. B rahmachari, A. Ghosal, E. M a and M . K. Parida, Phys. Lett. B 638 (2006) 345 [arX iv:hep-ph0603059]

