Search for the LFV Decay $\tau \to \mu \mu \bar{\mu}$ with the ATLAS Detector

Jörg v. Loeben, Vadym Zhuravlov Max-Planck-Institut für Physik joerg.von.loeben@cern.ch

Tuesday, 24.11.2009

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- 1. Introduction and Current Upper Limit
- 2. Sources of τ -Leptons at LHC and their Cross-Sections
- 3. How to Trigger on these Events?
- 4. Background to $\tau \to \mu \mu \mu$ from Heavy Mesons
- 5. Cut-Flow Analysis
- 6. Summary and Plans

Possible Models and BR's

model, processes	$BR(au o \mu \mu \mu)$	reference
Neutral SUSY Higgs	10^{-7}	hep-ph/0304081
Non universal Z' (technicolor)	10^{-8}	PLB547(2002)252
mSUGRA + seesaw	10^{-9}	hep-ph/0206110
SUSY SO(10) + seesaw	10^{-10}	hep-ph/0405017
SM + heavy Majorana neutrino	10^{-10}	PRD66(2002)034008
Littlest Higgs with T-Parity	10^{-12}	hep-ph/0702136
SM+neutrino oscillations	10^{-14}	hep-ph/9819484

Experimental upper limit:

BaBar: $5.3 \cdot 10^{-8}$ (in PDG) Belle: $3.2 \cdot 10^{-8}$ (in PDG¹), $2.1 \cdot 10^{-8}$ (Preliminary)

Which sensitivity can be reached with ATLAS ?

¹Will be used to normalize the number of signal events

Channel	$W \rightarrow \tau \bar{\nu}_{\tau}$	$Z \!\! ightarrow au^+ au^-$	$B^\pm/B^0/B^0_s$	D_s^\pm
Cross Section exp. τ (10 fb ⁻¹) max. $\tau \rightarrow 3\mu$	$\begin{array}{c} 17.2nb\\ 2\cdot10^8\\ 6\end{array}$	$rac{1.7}{3 \cdot 10^7}$ nb 1	$\begin{array}{c} 120\cdot 10^{3} \mathrm{nb} \\ 1\cdot 10^{12} \\ 32000 \end{array}$	$\begin{array}{c} 20 \cdot 10^3 \text{ nb} \\ 2 \cdot 10^{11} \\ 6400 \end{array}$

Cross-Section Calculation

- All cross-sections from Pythia 6.420 for 14 TeV collisions.
- Special tuning for heavy meson production from ATLAS B-physics group (PythiaB).

Most τ 's from B- and D-meson decays, but:

- High background from μ 's from jets expected in meson channels
- Numbers are not too meaningful yet, as the detector acceptance has to be taken into account.

An Ayast

On Generator Level

- $\bullet~{\rm Code}~{\rm for}~\tau\to\mu\mu\mu$ decay developed and included in ATLAS software.
 - \rightarrow Pure phase space decay
 - \rightarrow No spin correlations
- Determine detector acceptance ϵ_{acc} for the various production channels.
- Count events inside the geometrical and trigger acceptance of the detector for a better guess on the number of measurable events

Acceptance criteria (Considering a standard single or di-muon trigger without pre-scaling)					
Three Muons					
1	$p_T>3$ GeV/c, $ \eta <2.7$				
Two Muons	OR	One Muon			
$p_T > 6 \text{ GeV/c}, \eta < 2.4,$	OK	$p_T > 20 \text{ GeV/c, } \eta < 2.4$			

W/Z about 40× heavier then B/D-mesons. \Rightarrow Different kinematics of produced τ -leptons and muons.

$\eta-$ Distributions of the 3 Muons

B^0 -Source

Note: Cut on *b*-quarks ($|\eta| < 4.5$) set in pythia

p_T -Acceptance

p_T -Distributions of the 3 Muons

B^0 -Source

(Normalized to 10 fb⁻¹, assuming $Br(\tau \rightarrow \mu\mu\mu)=3.2 \cdot 10^{-8}$)

au-source	σ_{tot} [nb]	ϵ_{acc}	$\sigma_{acc}~[{\sf nb}]$	$N(au)/10~{ m fb^{-1}}$	$N(3\mu)/10 { m ~fb^{-1}}$
D_s^{\pm}	$19.7\cdot 10^3$	$8.9\cdot 10^{-4}$	17.5	$17.5 \cdot 10^7$	6
B^0	$56.4 \cdot 10^3$	$7.4 \cdot 10^{-4}$	41.7	$41.7\cdot 10^7$	13
B^{\pm}	$55.0 \cdot 10^3$	$6.8 \cdot 10^{-4}$	37.4	$37.4\cdot 10^7$	12
B_s^0	$9.9 \cdot 10^3$	$7.2 \cdot 10^{-4}$	7.13	$7.13 \cdot 10^7$	2
Z^0	1.66	0.56	0.93	$2 \times 0.93 \cdot 10^7$	1
W^{\pm}	17.2	0.51	8.84	$8.84\cdot 10^7$	3

 $\sigma_{tot} = \sigma(pp \rightarrow \tau), \, \sigma_{acc} = \sigma_{tot} \times \epsilon_{acc}$

- Cross-sections for the τ -production via meson-decays in the detector acceptance are $\sim 10 \times$ larger then from gauge bosons.
- But: Much better background suppression for W/Z-decays expected:
 - Muons are isolated
 - τ 's are boosted \rightarrow muons are in a small cone (disadvantage for trigger)
 - W-source: E_T^{miss} -signature from ν_{τ}
 - Z-source: Mass constraint for Z, 'tag and probe'

\Rightarrow Concentration on W-Channel

Signal Signature

Signal Signature $(W \rightarrow \tau \bar{\nu}_{\tau} \rightarrow \mu \mu \bar{\mu} \bar{\nu}_{\tau})$

- Three isolated μ 's with total charge ± 1 and $M_{\mu\mu\mu} = M_{\tau}$
- τ 's are boosted \Rightarrow muons are in a small cone (< 0.2)
- ν_{τ} implies E_T^{miss}

How to Trigger?

A. Ayast

The ATLAS Muon Trigger

- Level 1 (L1)
 - \rightarrow Hardware decision on muon p_T with fast trigger chambers (RPC, TGC).
 - \rightarrow Separate low- and high- p_T thresholds programmable.
- Level 2 (L2)
 - \rightarrow Fast event reconstruction on computing farm.
 - \rightarrow Also muon precision chambers and inner detector taken into account.
- Event Filter (EF)

 \rightarrow Refine L2 by offline reconstruction.

Signal muons have low p_T and decays are rare

- → Low- p_T threshold raised successively with increasing LHC lumi (4 → 9 GeV).
- \rightarrow Single muon trigger will be pre-scaled.
- → '2mu6' might be reasonable for first 10 fb^{-1} .

10^{31}	10^{32}	10^{33}
6 2×4 3×6	<mark>20</mark> 2×6 3×6	20 2×6(?) ?
	10 ³¹ 6 2x4 3x6	10 ³¹ 10 ³² 6 20 2x4 2x6 3x6 3x6

Trigger Efficiency vs. $\eta(\tau)$

- Trigger efficiencies calculated with respect to all signal events.
- 2mu6 about 30 % lower then single muon trigger.
- Not fully understood why L2-trigger efficiencies are going down in end-cap (|η| > 1.1).
- Comparative to $B_s \rightarrow \mu\mu$: $\epsilon(2mu6) = 51.6 \pm 0.2 \%.$

Signal muons have low p_T and decays are rare

- → Low- p_T threshold raised successively with increasing LHC lumi (4 → 9 GeV).
- → Single muon trigger will be pre-scaled.
- → '2mu6' might be reasonable for first 10 fb^{-1} .

$\mathscr{L}\left[cm^{-2}s^{-1}\right]$	10^{31}	10^{32}	10^{33}
single μ [GeV]	6	<mark>20</mark>	20
di-μ [GeV]	2×4	2×6	2×6(?)
tri-μ [GeV]	3×6	3×6	?

Trigger Efficiency vs. $p_T(\tau)$

Muon Momentum (> $4 \,\text{GeV/c}$)

Challenges to Trigger $\tau \rightarrow \mu \mu \mu$

Di-muon trigger constrained by L1 resolution

- \rightarrow Barrel: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- \rightarrow End-Caps: $\Delta \eta \times \Delta \phi = 0.03 \times 0.03$

• Single muon: Efficiency decreasing as ΔR correlated with p_T .

• Di-muon: Efficiency slightly increasing with ΔR .

Background Processes

An Ayait

Challenges

- No inclusive $c\bar{c} \rightarrow \mu\mu$ sample available in ATLAS.
- Inclusive $c\bar{c} \rightarrow \mu\mu\mu$ very time consuming to produce, as the cross-section is small.
- $\Rightarrow\,$ Muon decays have to be forced in the event generation to get some statistics in a reasonable time.
- \Rightarrow Private production for 'most dangerous' channels

$c\bar{c}-Processes$

• Look for decay chains with 3 muons in final state:

$$D_s^- \to \phi \mu^- \bar{\nu}_\mu \to \mu^+ \mu^- \mu^- \bar{\nu}_\mu$$
$$D_s^- \to \eta \mu^- \bar{\nu}_\mu \to \mu^+ \mu^- \gamma \mu^- \bar{\nu}_\mu$$

• Branching ratios of these decay chains are $\sim 10^{-6}$

For B-meson decays there are much more possibilities to get 3 muons, e.g.:

$$B_s \to D_s + X$$

 $\longrightarrow \mu\mu\mu + Y$

$$B_x \to D_x + \mu + X$$

 $\mu \mu + Y$

$$\begin{array}{c} B^- + B^+ \\ & & \longrightarrow \bar{D}^0 + \mu^+ \nu_\mu \\ & & & \longrightarrow \mu^- \bar{\nu}_\mu + K^+ \end{array}$$

Forcing Decays

- Idea: Produce 6 separate samples, each forcing the muon decays of one meson.
- Neglecting contributions from in-flight K and π decays (decaying in geant4).
- \Rightarrow Small samples produced, but still to be understood and not presented here.
- ⇒ Inclusive $b\bar{b} \rightarrow \mu\mu$ existing and used to determine main backgrounds.

Background Sources

Search for Tri-Muon Processes in Inclusive $b\bar{b} \rightarrow \mu\mu$ -Sample

- 1 mio. events from official ATLAS production (cross section: 64.5 nb).
- Leading muon: $p_T > 6 \text{ GeV/c}$, NL muon: $p_T > 4 \text{ GeV/c}$
- 1.4% events with three muons > 4 GeV/c.

Muon Sources (corresponds to $\sim 20 \text{ pb}^{-1}$)

Background Sources

Search for Tri-Muon Processes in Inclusive $b\bar{b} \rightarrow \mu\mu$ -Sample

- 1 mio. events from official ATLAS production (cross section: 64.5 nb).
- Leading muon: $p_T > 6 \text{ GeV/c}$, NL muon: $p_T > 4 \text{ GeV/c}$
- 1.4% events with three muons > 4 GeV/c.

Muon Sources - Signal Region ($\sim 20 \text{ pb}^{-1}$)

Process	Filter	Filter Eff.	XS[nb]	Events	\mathscr{L} [fb $^{-1}$]
$b\bar{b} \rightarrow \mu\mu$	$\mu_1 > 6, \mu_2 > 4$	-	65.4	1M	0.002
$c\bar{c} \rightarrow Ds + X$ $\rightarrow \phi \mu \nu \rightarrow \mu \mu \mu \nu$	$\begin{array}{l} \mu_{1,2} > 5, \eta_{1,2} < 2.5 \\ \mu_3 > 3, \eta_3 < 2.8 \end{array}$	0.02	$4.7 \cdot 10^{-3}$	47K	10
$c\bar{c} \rightarrow Ds + X$ $\rightarrow \eta\mu\nu \rightarrow \mu\mu\mu\nu\gamma$	$\begin{array}{l} \mu_{1,2} > 5, \eta_{1,2} < 2.5 \\ \mu_3 > 3, \eta_3 < 2.8 \end{array}$	0.01	$8.1 \cdot 10^{-4}$	45K	55
$W \to \tau \nu_{\tau} \to \mu \mu \mu$	_	1	$< 5.5 \cdot 10^{-7}$	25K	-

 \Rightarrow All events fully simulated and reconstructed with recent software releases.

Analysis

Cutflow

- Event preselection
- 2 $p_T^{\mu} > 6 \text{ GeV}, 1 p_T^{\mu} > 4 \text{ GeV}$
- 8 Muon isolation: E_T (cone 0.2) < 10 GeV
- $E_T^{miss} > 20 \, \mathrm{GeV}$
- Transverse mass M_T $(3\mu + E_T^{miss}) > 40 \text{ GeV}$ (constraint on W mass)
- $\label{eq:alpha} \mathbf{60} \ \Delta R \ \text{all possible pairs} < 0.2$
- Veto on ϕ -mass (1 σ window): 1020 \pm 20 MeV
- 3 μ invariant mass within 2σ window around τ -mass: 1777 \pm 50 MeV
- Trigger selection

Results

- Total signal efficiency (including detector acceptance): $\epsilon_{sig} = 22\%$
- Trigger efficiency on signal after all cuts : $\epsilon_{trig} = 57 \%$
- Total signal efficiency: $\epsilon_{sig} \times \epsilon_{trig} = 13\%$
- \Rightarrow Maximum only ~ 0.8 signal events for 10 fb⁻¹
 - Background events surviving: 4.9

Estimation of Upper Limit – Very Preliminary!

• Take number of background events in signal region and calculate Poisson interval with method from Feldman-Cousins (90% CL).

$$\Rightarrow Br(\tau \rightarrow \mu \mu \mu) = \frac{\text{UL from Poisson Intervall}}{\text{Number of produced} \tau' s \times \epsilon_{sig} \times \epsilon_{trig}}$$

• For 10 fb⁻¹:

$$Br(\tau \to \mu \mu \mu) < 1.7 \cdot 10^{-7}$$

- Compare to current UL from Belle: $Br(\tau \rightarrow \mu\mu\mu) < 3.2 \cdot 10^{-8}$.
- \Rightarrow About 100 fb⁻¹ needed at ATLAS.

Summary & Plans

Summary

- Several BSM theories predict LFV τ -decays at accessible magnitudes.
- Triggering on $\tau \rightarrow \mu \mu \mu$ is tricky, especially for high LHC-luminosities a dedicated trigger menu seems be unavoidable.
- The code to simulate $\tau \rightarrow 3\mu$ decay at ATLAS is in place and working.
- Dedicated $c\bar{c}$ -production for the background is done.
- Inclusive $b\bar{b} \rightarrow \mu\mu$ -sample is very helpful to understand the background, but statistics is low.
- Dedicated $b\bar{b}$ background in preparation.
- No chance to quickly reach current UL from B-factories, at least 100 fb⁻¹ will be needed.

Outlook & Plans

- Include systematic uncertainties in the analysis.
- Refit of the secondary vertex, especially to suppress $b\bar{b}$ -background.
- Lancaster group recently started to look into the $Z \rightarrow \tau \tau$ channel: Promising method to add muon tracks from inner detector only.

BACKUP

- Select combined inner detector / muon spectrometer muons.
- In addition 'low- p_T ' muons (inner detector + innermost MS layer)
- 3 muons with $p_T > 4 \, {\rm GeV/c}$ and $|\eta| < 2.7$
- Total muon charge ± 1
- If more then one triplet, take the one closer to τ -mass.

Process	Events	After Selection	Efficiency
$b\bar{b} \rightarrow \mu\mu$	1 M	14 K	1.4 %
$c\bar{c} \rightarrow D_s \phi \rightarrow \mu \mu \mu$	47 K	20 K	43 %
$c\bar{c} \rightarrow D_s \eta \rightarrow \mu \mu \mu \gamma$	45 K	18 K	40 %
$\tau \rightarrow \mu \mu \mu$	25 K	8 K	32 %

Efficiencies

Meson-Sources

- 1 mio. $b\bar{b}$ and $c\bar{c}$ -events generated with PythiaB, respectively.
- \bullet Used 'pysubs ckin 3 6', $p_T^c>4~{\rm GeV/c},~p_T^b>5~{\rm GeV/c},~|\eta|<4.5$

au-Source	σ_{prod}	$Br_{ au}$	$\sigma_{ au}$	$N(au)/10~{ m fb}^{-1}$	
$c\bar{c}$	$5.3\cdot 10^6~{ m nb}$	$7 \cdot 10^{-3}$	$37\cdot 10^3~{ m nb}$	$3.7 \cdot 10^{11}$	
$b\overline{b}$	$1.2\cdot 10^6~{ m nb}$	$8.7 \cdot 10^{-2}$	$104\cdot 10^3~{ m nb}$	$1 \cdot 10^{12}$	
$\sigma_{prod} = \sigma(pp \to M), Br_{\tau} = Br(M \to \tau + X), \sigma_{\tau} = \sigma_{prod} \cdot Br_{\tau}$					

Boson-Sources

- Generated 50k events of $W \to \tau \nu_{\tau}$ and $Z \to \tau^+ \tau^-$ with Pythia.
- Mass cut on 60 GeV for Z-source (standard), no cuts on W.

Boson (B)	σ_{prod}	$Br_{ au}$	$\sigma_{ au}$	$N(au)/10~{ m fb}^{-1}$	
Z^0	55 nb	0.03	1.66 nb	$1.7 \cdot 10^7$	
W^{\pm}	156 nb	0.11	$17.2 \ {\rm nb}$	$17.2 \cdot 10^7$	
$\sigma_{prod} = \sigma(pp \to B), Br_{\tau} = Br(B \to \tau + X), \sigma_{\tau} = \sigma_{prod} Br_{\tau}$					

