

Lepton Flavour Violation in the Neutrinoless τ Decay $\tau \rightarrow 3\mu$ with the CMS Experiment

Manuel Giffels

III. Physikalisches Institut B RWTH Aachen

Neutrino Masses and Lepton Flavour Violation at the LHC Würzburg 24.11.2009

Outline

- Introduction
 - Standard Model & Massive Neutrinos
 - LFV in New Physics
- Theoretical Calculations
 - Generic $\tau \to \mu \mu \mu$ Matrixelement
 - Models
 - Results (MC Level)
- $\bullet~{\rm LFV}$ in τ decays at CMS
 - Introduction
 - Results

Standard Model Limits LFV in New Physics

Introduction

<ロ> <同> <同> < 同> < 同>

æ

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Theoretical Calculations} \\ \mbox{LFV in } \tau \mbox{ decays at CMS} \end{array}$

Standard Model Limits LFV in New Physics

Standard Model + Massive Neutrinos

Lepton Flavour Violation

LFV is possible in the SM, due to massive neutrinos

GIM Mechanism in the Lepton Sector

There is an almost complete cancelation of the amplitudes coming from the 3 contributing undistinguishable diagrams, due to the unitarity of the mixing matrix

Branching Ratios in the SM

• The BR in the Standard Model are therefore rather small $(O(10^{-40}))$ and not measurable in current experiments

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Theoretical Calculations} \\ \mbox{LFV in } \tau \mbox{ decays at CMS} \end{array}$

Standard Model Limits LFV in New Physics

Current Limits

Achievable Limits in the Future $(au o \mu \mu \mu)$

- b factories reached already 10^{-8} similar to a previous CMS study CMS NOTE 2002/37
- SuperB factories would probe 10^{-10} - 10^{-9}

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Theoretical Calculations} \\ \mbox{LFV in } \tau \mbox{ decays at CMS} \end{array}$

Standard Model Limits LFV in New Physics

LFV in new physics:

- Beyond the SM a large number of theories give rise to LFV in the range of current experimental limits
- Mass dependent couplings prefer τ -LFV with respect to lighter leptons
- $au
 ightarrow I\gamma$ and au
 ightarrow III have different sensitivity to new physics

Some Predictions in BSM Models		
	$ $ BR($\tau \rightarrow I\gamma$)	${ m BR}(au o III)$
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10-7	10-9
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10 ⁻⁸	10^{-10}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-10}	10^{-7}
Non-Universal Z' (PLB547(2002)252)	10 ⁻⁹	10 ⁻⁸
SM+Heavy Majorana ν_R (PRD66(2002)034008)	10 ⁻⁹	10 ⁻¹⁰

Swagato Banerjee (talk at the CERN flavour workshop (11/05))

\Rightarrow LFV is an interesting option in search of new physics!

< 日 > < 同 > < 三 > < 三 >

Model-Independant Way The τ-Polarization Models Results (MC level)

Theoretical Calculations

э

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Theoretical Calculations}\\ \mbox{LFV in τ decays at CMS} \end{array}$

Model-Independant Way The τ -Polarization Models Results (MC level)

Most Generic Lagrangian

New physics models can affect physical observables (angular distribution, p_T distribution, etc.) \rightarrow Do they change the reconstruction efficiency?

$$\begin{split} \mathcal{L} &= G\left(g_{LL}^{S}(\bar{\mu}P_{R}\mu)(\bar{\mu}P_{L}\tau) + g_{LR}^{S}(\bar{\mu}P_{R}\mu)(\bar{\mu}P_{R}\tau) + g_{RL}^{S}(\bar{\mu}P_{L}\mu)(\bar{\mu}P_{L}\tau) + g_{RR}^{S}(\bar{\mu}P_{L}\mu)(\bar{\mu}P_{R}\tau) \\ &+ g_{LL}^{V}(\bar{\mu}\gamma_{\nu}P_{R}\mu)(\bar{\mu}\gamma^{\nu}P_{L}\tau) + g_{LR}^{V}(\bar{\mu}\gamma_{\nu}P_{R}\mu)(\bar{\mu}\gamma^{\nu}P_{R}\tau) \\ &+ g_{RL}^{V}(\bar{\mu}\gamma_{\nu}P_{L}\mu)(\bar{\mu}\gamma^{\nu}P_{L}\tau) + g_{RR}^{V}(\bar{\mu}\gamma_{\nu}P_{L}\mu)(\bar{\mu}\gamma^{\nu}P_{R}\tau) \\ &+ g_{LR}^{T}\left(\bar{\mu}\frac{\sigma_{\rho\nu}}{\sqrt{2}}P_{R}\mu\right)\left(\bar{\mu}\frac{\sigma^{\rho\nu}}{\sqrt{2}}P_{R}\tau\right) + g_{RL}^{T}\left(\bar{\mu}\frac{\sigma_{\rho\nu}}{\sqrt{2}}P_{L}\mu\right)\left(\bar{\mu}\frac{\sigma^{\rho\nu}}{\sqrt{2}}P_{L}\tau\right) \right) \end{split}$$

<u>Thanks to:</u>

Jim Kallarackal *et al*, RWTH Aachen, JHEP 0710 (2007) B. M. Dassinger *et al*, University of Siegen, Phys.Rev.D77:073010 (2008)

Current Implementation

- Matrix element is not yet implemented into a generator
- Choosing events during the generation process by hit or miss according to the matrix element

RNTHAACHEN

Model-Independant Way The τ -Polarization Models Results (MC level)

 $\tau\text{-}\mathsf{Polarization}$ necessary to evaluate the matrix element

W Boson

 τ leptons produced via W bosons are almost completely polarized (neglecting a correction in the order of $\frac{m_{\tau}^2}{m_{W'}^2}$)

Z Boson

The polarization of τ leptons produced via Z bosons is more complicated.

Origin	$P_{ au^+}$	$P_{ au^{-}}$	Probability
Charged vector boson: W^\pm	$P_{ au^+}=+1$	$P_{ au^-}=-1$	1.0
Neutral vector boson: Z/γ^*	$P_{ au^+}=+1$	$P_{ au^-}=-1$	P_Z
	$P_{ au^+}=-1$	$P_{ au^-}=+1$	$1 - P_Z$

$$P_{Z} = \frac{|\mathcal{M}|^{2}_{f\bar{f}\to\tau^{+}\tau^{-}}(+,-)}{|\mathcal{M}|^{2}_{f\bar{f}\to\tau^{+}\tau^{-}}(+,-) + |\mathcal{M}|^{2}_{f\bar{f}\to\tau^{+}\tau^{-}}(-,+)}$$
(1)

Using TAUOLA (KORALZ) routines to calculate the probability P_z .

Model-Independant Way The τ -Polarization Models Results (MC level)

$$P_{Z}(s,\theta) = \frac{\frac{d\sigma_{Born}}{d\cos\theta}(s,\cos\theta;+1)}{\frac{d\sigma_{Born}}{d\cos\theta}(s,\cos\theta;+1) + \frac{d\sigma_{Born}}{d\cos\theta}(s,\cos\theta;-1)}$$
(2)

Depends on the center-of-mass energy s, the decay angle θ and the couplings of the fermions to the Z.

э

Model-Independant Way The τ -Polarization **Models** Results (MC level)

Some Models with $au ightarrow \mu \mu \mu$

Topcolor–assisted Technicolor [Yue, Zong, Zhou and Yang, Phys. Rev. D 71 (2005); Yue, Zhang and Liu, Phys. Lett. B 547 (2002)]

See-Saw MSSM [Babu and Kolda, Phys. Rev. Lett. 89 (2002)]

Littlest Higgs with *T*-Parity [Buras *et al*, JHEP 0705 (2007)]

Kallarackal, Kraemer, O'Leary (2008)

3 N

11

Model-Independant Way The τ -Polarization **Models** Results (MC level)

Topcolor-Assisted Technicolor

Technicolor

New QCD–like force and particles \Rightarrow Higgs replaced by bound states analogous to mesons.

Topcolor

New U(1) gauge group coupling preferentially to third generation \Rightarrow new Z' with tree–level LFV.

Kallarackal, Kraemer, O'Leary (2008)

- 4 同 6 4 日 6 4 日

Model-Independant Way The τ -Polarization **Models** Results (MC level)

See–Saw MSSM

See-Saw MSSM

- Right-handed neutrinos in MSSM
- Higgs couplings to charged leptons, charginos and neutralinos ∝ tan(β)
 → Large tan(β) ⇒ Higgs contributions dominant

Kallarackal, Kraemer, O'Leary (2008)

Model-Independant Way The τ -Polarization **Models** Results (MC level)

Littlest Higgs with *T*-Parity

Littlest Higgs Model

Hierarchy problem postponed by extra symmetries for Higgs particles. *T*-parity \Rightarrow *T*-odd partners with in general different mixings and larger mass splittings.

Kallarackal, Kraemer, O'Leary (2008)

Image: A = A

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Theoretical Calculations}\\ \mbox{LFV in τ decays at CMS} \end{array}$

Model-Independant Way The τ -Polarization **Models** Results (MC level)

 θ is defined as angle between the τ polarization vector and the momentum vector of $\bar{\mu}$

Image: A image: A

-∢ ≣ →

э

Model-Independant Way The τ -Polarization Models Results (MC level)

RWTHAACHEN

Manuel Giffels

16

Model-Independant Way The τ -Polarization Models Results (MC level)

Model-Independant Way The τ -Polarization Models Results (MC level)

No significant differences between the considered models.

<ロト < 同ト < 三ト

< E

18

Model-Independant Way The τ -Polarization Models Results (MC level)

Suitable Acceptance Cuts on Generator Level

- Trigger: 1μ : $p_T > 19 \,\mathrm{GeV}$
- Trigger: 2μ : $p_T > 7 \,\mathrm{GeV}$
- Detector acceptance: $-2.5 < \eta < 2.5$
- All muons $p_T > 3 \,\mathrm{GeV}$

Model	Acceptance
No Model	27.1%
Higgs Triplet	28.0%
Little Higgs	27.9%
RPVSUSYLL	27.7%
RPVSUSYRR	27.0%
Technicolor	27.3%
Top Pion	27.6%
Zee-Babu	27.0%

No major differences concerning efficiency between the models recognizable \hookrightarrow No special matrix element necessary for the further analysis

Introduction Results

LFV in τ decays at CMS

▲ 同 ▶ → ● 三

20

э

- (E

Introduction Results

The CMS Detector

Well suited for studying $\tau \rightarrow 3\mu$:

- vertexing
- large muon system

$$rac{10-30\,{
m fb}^{-1}/{
m y}}{10-30\,{
m fb}^{-1}/{
m y}}$$
 (low lumi)
 $100-300\,{
m fb}^{-1}/{
m y}$ (high lumi)

э

< 17 >

Introduction Results

LFV in τ -decays at CMS

Possible decay	channels@low	lumi
----------------	--------------	------

- $\tau \rightarrow \mu \gamma$ (huge background)
- $\tau \rightarrow \mu \mu \mu$

Trigger at CMS (L1)

- single muon $p_t > 14 \,\mathrm{GeV}$
- di-muon $p_t > 3 \,\mathrm{GeV}$

High Level Trigger (HLT)

- single muon $p_t > 19 GeV$
- di-muon $p_t > 7 \,\mathrm{GeV}$

au-sources at the LHC (Pythia 6.325)

decay channel	$N_{ au}/y$ (low lumi)
$W \to \tau \nu_{\tau}$	$1.5 \cdot 10^8$
$\gamma/Z ightarrow au au$	$2.9\cdot 10^7$
$B^0 o au X$	$3.1\cdot10^{11}$
$B^\pm o au X$	$3.4\cdot10^{11}$
$B_s ightarrow au X$	$9.4\cdot10^{10}$
$D_s o au X$	$6.0\cdot10^{11}$

Backgrounds

 Main backgrounds from charm/bottom production

•
$$car{c}
ightarrow D_{s}
ightarrow \mu\phi + X$$
, $\phi
ightarrow \mu\mu(\gamma)$

- $c\bar{c} \rightarrow D_s \rightarrow \mu\eta + X$, $\eta \rightarrow \mu\mu(\gamma)$
- Other rare decays

Introduction Results

D_s/B Sources

With current standard triggers $au ightarrow 3\mu$ from D_{s} and B's will hardly be recorded

 \hookrightarrow Have to rely on τ leptons coming from W/Z decays

< 47 ▶

A B > A B >

Introduction Results

$\tau \rightarrow \mu \mu \mu \; (W/Z\text{-Source})$

Mass Resolution 24 ${\rm MeV}$

Assuming that $\mathcal{B}_r = 3.2 \cdot 10^{-8}$

au source	#events/year
W boson	≈ 5
Z boson	≈ 1

Challenging Analysis Trigger Muon Reconstruction

 \hookrightarrow Not an analysis for first day physics.

Older results (CMS Note 2002/037)

Expected limit:(W-Source)

- BR($\tau \to \mu \mu \mu$) = 7.0 · 10⁻⁸ (10 fb⁻¹)
- BR($\tau \to \mu \mu \mu$) = 3.8 · 10⁻⁸ (30 fb⁻¹)

Expected limit:(Z-Source)

• BR(
$$\tau \to \mu \mu \mu$$
) = 3.4 · 10⁻⁷
(30 fb⁻¹)

RWTHAACHEN

Conclusion

- Generic matrix element implementation for $\tau \rightarrow \mu \mu \mu$ available \rightarrow Re-weight MC according to model specific ME
- 8 different models have been tested on MC level
- No major differences concerning signal efficiency between models recognizable (MC level)
- Copious τ lepton production at CMS \hookrightarrow roughly 10¹² τ 's per year
- Unfortunately only W and Z sources are usable at the moment \hookrightarrow roughly $10^8~\tau{\rm 's}$ per year
- Challenging analysis for the muon reconstruction and triggers
- Achievable limits are comparable to limits recently published by b-factories

