The Decay Length Method for LHC Physics

Reiner Klingenberg, TU Dortmund University, Experimentelle Physik IV

This is a talk not mainly on prospects for Lepton Flavour Violation @ LHC

but a short summary of our recent activities for LHC and Neutrino Physics

to delimit possibilities within this working group

The Decay Length Method for LHC Physics

Reiner Klingenberg, TU Dortmund University, Experimentelle Physik IV

This is a talk not mainly on prospects for Lepton Flavour Violation @ LHC

but a short summary of our recent activities for LHC and Neutrino Physics

to delimit possibilities within this working group

The Decay Length Method for LHC Physics top quark \Rightarrow SUSY stop \Rightarrow LFV

Reiner Klingenberg, TU Dortmund University, Experimentelle Physik IV

This is a talk not mainly on prospects for Lepton Flavour Violation @ LHC

but a short summary of our recent activities for LHC and Neutrino Physics

to delimit possibilities within this working group

The Decay Length Method for LHC Physics top quark \Rightarrow SUSY stop \Rightarrow LFV

(Search for Majorana Neutrinos in CdZnTe)

Reiner Klingenberg, TU Dortmund University, Experimentelle Physik IV

Activities at Experimentelle Physik IV, TU Dortmund

- Within the ATLAS collaboration
- Main activities so far:
 - ATLAS pixel detector, sensor, modules, comissioning
 - Analysis preparation, top quark physics, SUSY (stop)

- Within the COBRA collaboration
 - Search for neutrinoless double beta decay, Majorana neutrinos, LFV

ATLAS Detector @ CERN-LHC

ATLAS Detector @ CERN-LHC

http://atlas.web.cern.ch/Atlas/ public/EVTDISPLAY/events.html

ATLAS Pixel Detector

as tracking & vertex device

- barrel and disc geometry pseudo-rapidity |η|<2.5
- pixels of 50 µm x 400 µm
 80 million read-out channels

The ATLAS collaboration The ATLAS Experiment at the CERN Large Hadron Collider JINST 3 S08003 (2008)

- vertex resolution < 20 μm
- vertex and secondary vertex resolution capabilities to determine production verticies in high luminosity environment and to determine decay vertices of long-lived (ps) particles, e.g. taus, b-hadrons, new physics e.g. in case of long-lived scalar tops

Decay Length Method Decay of Top Quarks

Detection & Identification of Top Quarks

• e.g. in the so-called 1-lepton channel

 $pp \to t\bar{t} \to \mu\nu b j j b$

• signature:

- 4 jets (2j+2b)
- + 1 myon
- + missing energy

Decay Length Method applied to top quark decays

 b hadron receives boost due to mass (energy) of the top quark

$$\gamma_b \approx \frac{1}{2} \frac{m_t^2 + m_b^2 - m_W^2}{m_b m_t}$$

• Life time and decay length of b hadron will receive dilatation

$$L_b = c\tau_b \beta_b \gamma_b$$

C. S. Hill, J. R. Incandela, J. M. Lamb: Method for measurement of the top quark mass using the mean decay length of b hadrons in tT events Phys. Rev. D 71 (2005) 054029

Experimental Observal: Measurement of the (transverse) Decay Length

Mass Estimator for Top Quarks

J. Walbersloh, PhD Thesis TU Dortmund (2009)

Summary of Mass Determination Methods

FERMILAB-TM-2427-E TEVEWWG/top 2009/03 CDF Note 9717 DØ Note 5899 March 2009

J. Walbersloh, PhD Thesis TU Dortmund (2009) (ATLAS) Comparison of the systematic uncertainty estimates for the χ^2 minimization and the decay length method.

systematic	$\Delta m_t \; [\text{GeV}] @ m_t = 175 \text{ GeV}$			
uncertainty	$\langle L_{xy} \rangle$	χ^2 minimization		
b-tagging	+3.62/-3.02	n.a.		
jet energy scale	negligible	3.5		
B-hadron lifetime	± 0.96	n.a.		
b-fragmentation	+1.00/-0.88	0.1		
ISR/FSR	± 4.94	0.3		
total	+6.27/-5.93	3.5		

complemantarity of methods and systematics

FERMILAB-TM-2427-E **TEVEWWG/top 2009/03** CDF Note 9717 DØ Note 5899

Summary of Mass Determination Methods

arXiv:0903.2503

J. Walbersloh, PhD Thesis TU Dortmund (2009) (ATLAS) Comparison of the systematic uncertainty estimates for the χ^2 minimization and the decay length method.

systematic	$\Delta m_t \; [\text{GeV}] @ m_t = 175 \text{ GeV}$			
uncertainty	$\langle L_{xy} \rangle$	χ^2 minimization		
b-tagging	+3.62/-3.02	n.a.		
jet energy scale	negligible	3.5		
B-hadron lifetime	± 0.96	n.a.		
b-fragmentation	+1.00/-0.88	0.1		
ISR/FSR	± 4.94	0.3		
total	+6.27/-5.93	3.5		

decay length method @ CDF/Tevatron-

complemantarity of methods and systematics

Application of the Decay Length Method for Minimal Flavour Violation of MSSM

- (Ambrosi et al: Nucl. Phys. B 645 (2002) 155)
 MFV: dynamics of flavour changing with quarks and scalar quarks is completely determined by ordinary quark Yukawa couplings
- within MSSM: highly degenerated 1st and 2nd generation of squarks, and small, CKM suppressed mixing to the 3rd generaton
- to prove: study mass hierarchy ⇔ hierarchy of Yukawa coupling could get long-lived sparticles, detectable in the order milimeter

Application of the Decay Length Method for Minimal Flavour Violation of MSSM

- (Ambrosi et al: Nucl. Phys. B 645 (2002) 155)
 MFV: dynamics of flavour changing with quarks and scalar quarks is completely determined by ordinary quark Yukawa couplings
- within MSSM: highly degenerated 1st and 2nd generation of squarks, and small, CKM suppressed mixing to the 3rd generaton
- to prove: study mass hierarchy ⇔ hierarchy of Yukawa coupling could get long-lived sparticles, detectable in the order milimeter (Hiller et al.: arXiv:0910.2124v1, arXiv:0802.0916v1)
- expect large mass splitting between \tilde{t}_1 and \tilde{t}_2 due to large L-R mass mixing
- flavour diagonal decay channels are suppressed or forbidden

 Δ

• stop quark \tilde{t}_1 decays CKM suppressed via flavour changing neutral current loop decay into charm and lightest neutralino

$$\tilde{t}_1 \to c \tilde{\chi}_1^0 \qquad \Gamma \approx \frac{m_{\tilde{t}_1} Y^2}{4\pi} \left(\frac{\Delta m}{m_{\tilde{t}_1}}\right)^2 \qquad \tau = \frac{1}{\Gamma} \approx \mathcal{O} \left(1...10 \,\mathrm{ps}\right)$$
$$m = m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \le 5...10 \,\mathrm{GeV} \qquad m_{\tilde{t}_1} \approx m_{\tilde{\chi}_1^0} \approx 100 \,\mathrm{GeV} \qquad \mathbf{Y} \approx \mathcal{O} \left(10^{-5}\right)$$

Experimental Status for Light Scalar Tops

Relation between neutralino and stop masses

CDF Note 9834

Experimental Status for Light Scalar Tops

Relation between neutralino and stop masses

CDF Note 9834 (July 2009)

not excluded yet

there is still a potential for light stops

if light stops indeed would exist, this could be an area to test Minimal Flavour Violation in MSSM by looking for long-lived scalar top quarks

Experimental Status for Light Scalar Tops

Relation between neutralino and stop masses

CDF Note 9834 (July 2009)

not excluded yet

there is still a potential for light stops

if light stops indeed would exist, this could be an area to test Minimal Flavour Violation in MSSM by looking for long-lived scalar top quarks

region for long-lived scalar tops

Long-lived Stops & Minimal Flavour Violation SUSY

G. Hiller, Y. Nir: Measuring Flavour Mixing with Minimal Flavour Violation at the LHC, arXiv:0802.0916 [hep-ph]

G. Hiller, JS Kim, H. Sedello: Collider Signatures of Minimal Flavour Mixing from Stop Decay Length Measurements, arXiv:0910.2124 [hep-ph]

FIG. 2: The pseudo-rapidity distribution of the two stops at the LHC in processes Eq. (4) for $m_{\tilde{t}} = 100 \text{ GeV}$ and $m_{\tilde{g}} = 500 \text{ GeV}$. In all shown events both stops satisfy $\gamma\beta > 1$. The thick (thin) contour contains 80% (90%) of the events shown.

FIG. 4: The distribution of impact parameters b_i in mm at the LHC in processes Eq. (4) for different stop lifetimes. The curves with $b_i > 0 (< 0)$ refer to the stop in each event with larger (smaller) charm p_T .

Potential Experimental Signature: Light Stops Associated with Same Sign Leptons

Majorana gluinos with $m_{\tilde{g}} > m_{\tilde{t}_1} + m_t$

4 different final states: $\tilde{g}\tilde{g} \rightarrow t\bar{t}\tilde{t}_{1}\tilde{t}_{1}^{*}, tt\tilde{t}_{1}^{*}\tilde{t}_{1}^{*}, t\bar{t}\bar{t}_{1}\tilde{t}_{1}, t\bar{t}\tilde{t}_{1}\tilde{t}_{1}, t\bar{t}\tilde{t}_{1}\tilde{t}_{1}, the formula of them contain same sign tops and same sign lepton)$

event topology: $\tilde{g}\tilde{g} \rightarrow bb\,ll + Jets + E_T^{miss}$

I. Reisinger, TU Dortmund → ATLAS

Potential Experimental Signature: Light Stops Associated with Same Sign Leptons

I. Reisinger, TU Dortmund → ATLAS

Majorana gluinos with $m_{\tilde{g}} > m_{\tilde{t}_1} + m_t$

4 different final states: $\tilde{g}\tilde{g} \rightarrow t\bar{t}\tilde{t}_{1}\tilde{t}_{1}^{*}, tt\tilde{t}_{1}^{*}\tilde{t}_{1}^{*}, t\bar{t}\bar{t}_{1}\tilde{t}_{1}, t\bar{t}\tilde{t}_{1}\tilde{t}_{1}, the tilde{t}_{1}$ (half of them contain same sign tops and same sign lepton)

event topology: $\tilde{g}\tilde{g} \rightarrow bb\,ll + Jets + E_T^{miss}$

investigated challenge: experimental signature of decay length of stop quarks ~ O(ps)

handle on stop lifetime, gluino masses and $\tilde{t}_1 - c - \tilde{\chi}_1^0 - coupling$

background: ttbar, single top, W/Z + Jets, WW, WZ, ZZ, QCD, SUSY, ...

• LFV in tau decays, $\tau \rightarrow 3 \mu$

• LFV in tau decays, $\tau \rightarrow 3 \mu$, (see session 4)

• study long lived STAU

• LFV in tau decays, $\tau \rightarrow 3 \mu$

(LFV
$$\phi_{
m NLSP} = N_1 ilde{e} + \sqrt{1-N_1^2 ilde{ au}}$$
)

if lifetime measurement is possible, fraction N_1 of selectron in NLSP could be determined

Long life stau in the minimal supersymmetric standard model T. Jittoh, J. Sato, T. Shimomura and M. Yamanaka, arXiv:hep-ph/0512197v2, May 2006

study long lived stau NLSP,

estimation of stau life times:

Long-Lived Slepton in the Coannihilation Region and Measurement of Lepton Flavour Violation at LHC S Kaneko, J Sato, T Shimomura, O Vives and M Yamanaka Journal of Physics: Conference Series **171** (2009) 012092

Table 1. Table of the mass difference and the lightest slepton, neutralino masses. m_0 , A_0 and $\tan \beta$ are fixed to 260 GeV, 600 GeV and 30, respectively. The values of neutralino abundance and a_{μ} are shown for the reference.

No.	$\delta m ~({ m GeV})$	$m_{{ ilde \chi}^0_1}~({ m GeV})$	$m_{ ilde{l}_1}~({ m GeV})$	$\Omega_{ ilde{\chi}_1^0} h^2$	$a_{\mu}~(imes 10^{-10})$
A	2.227	323.1549	325.3817	0.110	10.32
В	1.650	325.5601	326.2147	0.102	10.25
C	0.407	327.6294	328.0365	0.085	10.09
D	0.092	328.4060	328.4981	0.081	10.06

Summary & Conclusion

- opportunities for LFV at LHC
 - it could be interesting to apply a method like the decay length for processes to study parameters of Lepton Flavour Violation

• presently, analysis preparation for ATLAS/LHC and COBRA

Activities

Lepton Flavour Violation and Majorana Neutrinos

Sketch of the Experimental Set-up

- Search for 0vββ signature with CdZnTe semiconductor detectors
- Source = Detector
- Main isotope of interest the β - β 116Cd (β + β + 106Cd)
- Ultra low background experiment
- Experimental sensitivity: $T_{1/2} \sim a \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$

abundance
$$a$$
, Mass M , lifetime t (measurement), Background-level B , Energy-Resolution ΔE

Sketch of the Experimental Set-up

- Search for 0vββ signature with CdZnTe semiconductor detectors
- Source = Detector
- Main isotope of interest the $\beta^{-}\beta^{-}$ ¹¹⁶Cd $(\beta^{+}\beta^{+} 106 Cd)$

Gerda

116Cd

¹⁰⁰Mo

3000

130Te

105

10

10³

- Ultra low background experiment
- Experimental sensitivity:
- abundance a, Mass M, lifetime t (measurement), Background-level B, Energy-Resolution ΔE

Summary & Conclusion

- opportunities for LFV
- at LHC
 - it could be interesting to apply a method like the decay length for processes to study parameters of Lepton Flavour Violation

• presently, analysis preparation for ATLAS/LHC and COBRA